Pregled bibliografske jedinice broj: 996742
Complex dimensions generated by essential singularities
Complex dimensions generated by essential singularities // 1147th AMS Meeting Program
Honolulu (HI), Sjedinjene Američke Države, 2019. str. 204-204 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 996742 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Complex dimensions generated by essential singularities
Autori
Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
1147th AMS Meeting Program
/ - , 2019, 204-204
Skup
AMS Spring Central and Western Joint Sectional Meeting
Mjesto i datum
Honolulu (HI), Sjedinjene Američke Države, 22.03.2019. - 24.03.2019
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
fractal zeta function ; essential singularity ; pole ; Minkowski content ; Minkowski dimension ; fractal string ; box dimension
Sažetak
Complex dimension are usually defined as poles of the associated fractal zeta function and provide a far-reaching generalization of the classical notion of the Minkowski dimensions. We explore complex dimensions which arise as essential singularities of geometric zeta functions $\zeta_{; ; ; \mathcal L}; ; ; $, associated with bounded fractal strings $\mathcal L$ as well as essential singularities of distance zeta functions associated with compact subsets of $\mathbb{; ; ; R}; ; ; ^N$. More precisely, for any three prescribed real numbers $D_{; ; ; \infty}; ; ; $, $D_1$ and $D$ in $[0, 1]$, such that $D_{; ; ; \infty}; ; ; <D_1\le D$, we construct a bounded fractal string $\mathcal L$ such that $D_{; ; ; \rm par}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )=D_{; ; ; \ty}; ; ; $, $D_{; ; ; \rm mer}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )=D_1$ and $D(\zeta_{; ; ; \mathcal L}; ; ; )=D$. Here, $D(\zeta_{; ; ; \mathcal L}; ; ; )$ is the abscissa of absolute convergence of $\zeta_{; ; ; \mathcal L}; ; ; $, $D_{; ; ; \rm mer}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )$ is the abscissa of meromorphic continuation of $\zeta_{; ; ; \mathcal L}; ; ; $, while $D_{; ; ; \rm par}; ; ; (\zeta_{; ; ; \mathcal L}; ; ; )$ is the infimum of all positive real numbers $\a$ such that $\zeta_{; ; ; \mathcal L}; ; ; $ is holomorphic in the right open half-plane $\{; ; ; \re s>\a\}; ; ; $, except for possible isolated singularities in this half-plane. We achieve this by defining $\mathcal L$ as the disjoint union of a sequence of suitable generalized Cantor strings. Furthermore, we show that the set of accumulation points of the set $S_\ty$ of essential singularities of $\zeta_{; ; ; \mathcal L}; ; ; $, contained in the open right half-plane $\{; ; ; \re s>D_{; ; ; \ty}; ; ; \}; ; ; $, coincides with the vertical line $\{; ; ; \re s=D_{; ; ; \ty}; ; ; \}; ; ; $. We zhen extend this construction to the case of distance zeta functions $\zeta_A$ of compact sets $A$ in $\eR^N$, for any positive integer $N$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-1020 - Fraktalna analiza diskretnih dinamičkih sustava (DSfracta) (Resman, Maja, HRZZ - 2017-05) ( CroRIS)
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb