Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 996273

Why Deep Neural Nets Cannot Ever Match Biological Intelligence and What To Do About It?


Nikolić, Danko
Why Deep Neural Nets Cannot Ever Match Biological Intelligence and What To Do About It? // International Journal of Automation and Computing, 14 (2017), 5; 532-541 doi:10.1007/s11633-017-1093-8 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 996273 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Why Deep Neural Nets Cannot Ever Match Biological Intelligence and What To Do About It?

Autori
Nikolić, Danko

Izvornik
International Journal of Automation and Computing (1476-8186) 14 (2017), 5; 532-541

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Artificial intelligence ; neural networks ; strong artificial intelligence ; practopoiesis ; machine learning

Sažetak
The recently introduced theory of practopoiesis offers an account on how adaptive intelligent systems are organized. According to that theory, biological agents adapt at three levels of organization and this structure applies also to our brains. This is referred to as tri-traversal theory of the organization of mind or for short, a T3-structure. To implement a similar T3- organization in an artificially intelligent agent, it is necessary to have multiple policies, as usually used as a concept in the theory of reinforcement learning. These policies have to form a hierarchy. We define adaptive practopoietic systems in terms of hierarchy of policies and calculate whether the total variety of behavior required by real-life conditions of an adult human can be satisfactorily accounted for by a traditional approach to artificial intelligence based on T2-agents, or whether a T3-agent is needed instead. We conclude that the complexity of real life can be dealt with appropriately only by a T3-agent. This means that the current approaches to artificial intelligence, such as deep architectures of neural networks, will not suffice with fixed network architectures. Rather, they will need to be equipped with intelligent mechanisms that rapidly alter the architectures of those networks.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Psihologija



POVEZANOST RADA


Ustanove:
Filozofski fakultet, Zagreb

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Nikolić, Danko
Why Deep Neural Nets Cannot Ever Match Biological Intelligence and What To Do About It? // International Journal of Automation and Computing, 14 (2017), 5; 532-541 doi:10.1007/s11633-017-1093-8 (međunarodna recenzija, članak, znanstveni)
Nikolić, D. (2017) Why Deep Neural Nets Cannot Ever Match Biological Intelligence and What To Do About It?. International Journal of Automation and Computing, 14 (5), 532-541 doi:10.1007/s11633-017-1093-8.
@article{article, author = {Nikoli\'{c}, Danko}, year = {2017}, pages = {532-541}, DOI = {10.1007/s11633-017-1093-8}, keywords = {Artificial intelligence, neural networks, strong artificial intelligence, practopoiesis, machine learning}, journal = {International Journal of Automation and Computing}, doi = {10.1007/s11633-017-1093-8}, volume = {14}, number = {5}, issn = {1476-8186}, title = {Why Deep Neural Nets Cannot Ever Match Biological Intelligence and What To Do About It?}, keyword = {Artificial intelligence, neural networks, strong artificial intelligence, practopoiesis, machine learning} }
@article{article, author = {Nikoli\'{c}, Danko}, year = {2017}, pages = {532-541}, DOI = {10.1007/s11633-017-1093-8}, keywords = {Artificial intelligence, neural networks, strong artificial intelligence, practopoiesis, machine learning}, journal = {International Journal of Automation and Computing}, doi = {10.1007/s11633-017-1093-8}, volume = {14}, number = {5}, issn = {1476-8186}, title = {Why Deep Neural Nets Cannot Ever Match Biological Intelligence and What To Do About It?}, keyword = {Artificial intelligence, neural networks, strong artificial intelligence, practopoiesis, machine learning} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font