Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 995325

Extraction of Useful Information Content from Noisy Signals Based on Structural Affinity of Clustered TFDs’ Coefficients


Saulig, Nicoletta; Lerga, Jonatan; Milanović, Željka; Ioana, Cornel
Extraction of Useful Information Content from Noisy Signals Based on Structural Affinity of Clustered TFDs’ Coefficients // IEEE Transactions on Signal Processing, 67 (2019), 12; 3154-3167 doi:10.1109/TSP.2019.2912134 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 995325 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Extraction of Useful Information Content from Noisy Signals Based on Structural Affinity of Clustered TFDs’ Coefficients

Autori
Saulig, Nicoletta ; Lerga, Jonatan ; Milanović, Željka ; Ioana, Cornel

Izvornik
IEEE Transactions on Signal Processing (1053-587X) 67 (2019), 12; 3154-3167

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Time-frequency distributions ; Threshold ; K-means ; Intersection of confidence intervals (ICI) rule

Sažetak
This paper proposes an automatic method for extraction of useful information content from timefrequency distributions of nonstationary signals heavily corrupted by additive noise. The proposed method, which does not require prior knowledge of the signal, initially performs a 1D clustering of the time-frequency distribution aimed at segmenting it into a fixed number of classes. This procedure points out basic structural differences of noise and signal components (i.e. useful information) in the timefrequency plane. In fact, noise presents a flat spectrum with large time- frequency supports, while signal components are narrow energy ridges. The time-frequency supports are estimated for each of the obtained classes and used as input for an algorithm aimed at discriminating “noise” affine classes, containing mainly non-zero coefficients located outside the components time-frequency supports, from “useful information” affine classes, containing mainly coefficients inside time- frequency supports of the signal components. Simulations show the superiority of the proposed algorithm, mainly in terms of error rate reduction of classified time-frequency coefficients, compared to hard amplitude thresholding methods, as well as to a recently proposed method for information content extraction based on adaptive thresholding, which is also outperformed in terms of computational complexity and execution time (by up to 43 and 28 times, respectively).

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište Jurja Dobrile u Puli

Profili:

Avatar Url Željka Tomasović (autor)

Avatar Url Nicoletta Saulig (autor)

Avatar Url Jonatan Lerga (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Saulig, Nicoletta; Lerga, Jonatan; Milanović, Željka; Ioana, Cornel
Extraction of Useful Information Content from Noisy Signals Based on Structural Affinity of Clustered TFDs’ Coefficients // IEEE Transactions on Signal Processing, 67 (2019), 12; 3154-3167 doi:10.1109/TSP.2019.2912134 (međunarodna recenzija, članak, znanstveni)
Saulig, N., Lerga, J., Milanović, Ž. & Ioana, C. (2019) Extraction of Useful Information Content from Noisy Signals Based on Structural Affinity of Clustered TFDs’ Coefficients. IEEE Transactions on Signal Processing, 67 (12), 3154-3167 doi:10.1109/TSP.2019.2912134.
@article{article, author = {Saulig, Nicoletta and Lerga, Jonatan and Milanovi\'{c}, \v{Z}eljka and Ioana, Cornel}, year = {2019}, pages = {3154-3167}, DOI = {10.1109/TSP.2019.2912134}, keywords = {Time-frequency distributions, Threshold, K-means, Intersection of confidence intervals (ICI) rule}, journal = {IEEE Transactions on Signal Processing}, doi = {10.1109/TSP.2019.2912134}, volume = {67}, number = {12}, issn = {1053-587X}, title = {Extraction of Useful Information Content from Noisy Signals Based on Structural Affinity of Clustered TFDs’ Coefficients}, keyword = {Time-frequency distributions, Threshold, K-means, Intersection of confidence intervals (ICI) rule} }
@article{article, author = {Saulig, Nicoletta and Lerga, Jonatan and Milanovi\'{c}, \v{Z}eljka and Ioana, Cornel}, year = {2019}, pages = {3154-3167}, DOI = {10.1109/TSP.2019.2912134}, keywords = {Time-frequency distributions, Threshold, K-means, Intersection of confidence intervals (ICI) rule}, journal = {IEEE Transactions on Signal Processing}, doi = {10.1109/TSP.2019.2912134}, volume = {67}, number = {12}, issn = {1053-587X}, title = {Extraction of Useful Information Content from Noisy Signals Based on Structural Affinity of Clustered TFDs’ Coefficients}, keyword = {Time-frequency distributions, Threshold, K-means, Intersection of confidence intervals (ICI) rule} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font