Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 992353

Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection


Hržić, Franko; Štajduhar, Ivan; Tschauner, Sebastian; Sorantin, Erich; Lerga, Jonatan
Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection // Entropy (Basel. Online), 21 (2019), 4; 338, 18 doi:10.3390/e21040338 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 992353 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection

Autori
Hržić, Franko ; Štajduhar, Ivan ; Tschauner, Sebastian ; Sorantin, Erich ; Lerga, Jonatan

Izvornik
Entropy (Basel. Online) (1099-4300) 21 (2019), 4; 338, 18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Bone fracture detection ; Image segmentation ; Image classification ; Local entropy ; Shannon entropy

Sažetak
The paper proposes a segmentation and classification technique for fracture detection in X-ray images. This novel rotation-invariant method introduces the concept of local entropy for de-noising and removing tissue from the analysed X-ray images, followed by an improved procedure for image segmentation and the detection of regions of interest. The proposed local Shannon entropy was calculated for each image pixel using a sliding 2D window. An initial image segmentation was performed on the entropy representation of the original image. Next, a graph theory-based technique was implemented for the purpose of removing false bone contours and improving the edge detection of long bones. Finally, the paper introduces a classification and localisation procedure for fracture detection by tracking the difference between the extracted contour and the estimation of an ideal healthy one. The proposed hybrid method excels at detecting small fractures (which are hard to detect visually by a radiologist) in the ulna and radius bones—common injuries in children. Therefore, it is imperative that a radiologist inspecting the X-ray image receives a warning from the computerised X-ray analysis system, in order to prevent false-negative diagnoses. The proposed method was applied to a data-set containing 860 X-ray images of child radius and ulna bones (642 fracture-free images and 218 images containing fractures). The obtained results showed the efficiency and robustness of the proposed approach, in terms of segmentation quality and classification accuracy and precision (up to 91.16% and 86.22%, respectively).

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Štajduhar (autor)

Avatar Url Jonatan Lerga (autor)

Avatar Url Franko Hržić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Hržić, Franko; Štajduhar, Ivan; Tschauner, Sebastian; Sorantin, Erich; Lerga, Jonatan
Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection // Entropy (Basel. Online), 21 (2019), 4; 338, 18 doi:10.3390/e21040338 (međunarodna recenzija, članak, znanstveni)
Hržić, F., Štajduhar, I., Tschauner, S., Sorantin, E. & Lerga, J. (2019) Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection. Entropy (Basel. Online), 21 (4), 338, 18 doi:10.3390/e21040338.
@article{article, author = {Hr\v{z}i\'{c}, Franko and \v{S}tajduhar, Ivan and Tschauner, Sebastian and Sorantin, Erich and Lerga, Jonatan}, year = {2019}, pages = {18}, DOI = {10.3390/e21040338}, chapter = {338}, keywords = {Bone fracture detection, Image segmentation, Image classification, Local entropy, Shannon entropy}, journal = {Entropy (Basel. Online)}, doi = {10.3390/e21040338}, volume = {21}, number = {4}, issn = {1099-4300}, title = {Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection}, keyword = {Bone fracture detection, Image segmentation, Image classification, Local entropy, Shannon entropy}, chapternumber = {338} }
@article{article, author = {Hr\v{z}i\'{c}, Franko and \v{S}tajduhar, Ivan and Tschauner, Sebastian and Sorantin, Erich and Lerga, Jonatan}, year = {2019}, pages = {18}, DOI = {10.3390/e21040338}, chapter = {338}, keywords = {Bone fracture detection, Image segmentation, Image classification, Local entropy, Shannon entropy}, journal = {Entropy (Basel. Online)}, doi = {10.3390/e21040338}, volume = {21}, number = {4}, issn = {1099-4300}, title = {Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection}, keyword = {Bone fracture detection, Image segmentation, Image classification, Local entropy, Shannon entropy}, chapternumber = {338} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • INSPEC
  • MathSciNet


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font