Pregled bibliografske jedinice broj: 992030
Iterative Recursive Attention Model for Interpretable Sequence Classification
Iterative Recursive Attention Model for Interpretable Sequence Classification // Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP / Linzen, Tal ; Chrupała, Grzegorz ; Alishahi, Afra (ur.).
Brisel: Association for Computational Linguistics (ACL), 2018. str. 249-257 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 992030 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Iterative Recursive Attention Model for Interpretable Sequence Classification
Autori
Tutek, Martin ; Šnajder, Jan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
/ Linzen, Tal ; Chrupała, Grzegorz ; Alishahi, Afra - Brisel : Association for Computational Linguistics (ACL), 2018, 249-257
Skup
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
Mjesto i datum
Bruxelles, Belgija, 01.11.2018
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Obrada prirodnog jezika ; Duboko učenje ; interpretabilnost
(Natural language processing ; Deep learning ; interpretability)
Sažetak
Natural language processing has greatly benefited from the introduction of the attention mechanism. However, standard attention models are of limited interpretability for tasks that involve a series of inference steps. We describe an iterative recursive attention model, which constructs incremental representations of input data through reusing results of previously computed queries. We train our model on sentiment classification datasets and demonstrate its capacity to identify and combine different aspects of the input in an easily interpretable manner, while obtaining performance close to the state of the art
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb