Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 991785

Two hybrid data-driven models for modeling water- air temperature relationship in rivers


Zhu, Senlin; Hadzima-Nyarko, Marijana; Gao, Ang; Wang, Fangfang; Wu, Jingxiu; Wu, Shiqiang
Two hybrid data-driven models for modeling water- air temperature relationship in rivers // Environmental science and pollution research, 26 (2019), 12; 12622-12630 doi:10.1007/s11356-019-04716-y (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 991785 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Two hybrid data-driven models for modeling water- air temperature relationship in rivers

Autori
Zhu, Senlin ; Hadzima-Nyarko, Marijana ; Gao, Ang ; Wang, Fangfang ; Wu, Jingxiu ; Wu, Shiqiang

Izvornik
Environmental science and pollution research (0944-1344) 26 (2019), 12; 12622-12630

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
River water temperature ; Wavelet transformation ; MLPNN ; ANFIS ; Hybrid model

Sažetak
River water temperature (RWT) forecasting is important for the management of stream ecology. In this paper, a new method based on coupling of wavelet transformation (WT) and artificial intelligence (AI) techniques, including multilayer perceptron neural network (MLPNN) and adaptive neural-fuzzy inference system (ANFIS) for RWT prediction is proposed. The performances of the hybrid models are compared with regular MLPNN and ANFIS models and multiple linear regression (MLR) models for RWT forecasting in two river stations in the Drava River, Croatia. Model performance was evaluated using the coefficient of correlation (R), the Willmott index of agreement (d), the root mean squared error (RMSE), and the mean absolute error (MAE). Results indicate that the combination of WTand AI models (WTMLPNN and WTANFIS) yield better models than the conventional forecasting models for RWT simulation for both regular periods and heatwave events. The MLPNN and ANFIS models outperform the MLR models for RWT simulation for the studied river stations. RMSE values of WTMLPNN2 and WTANFIS2 models range from 1.127 to 1.286 °C, and 1.216 to 1.491 °C for the Botovo and Donji Miholjac stations respectively. Additionally, modeling results further confirm the importance of the day of year (DOY) on the thermal dynamics of the river. The results of this study indicate the potential of coupling of WTand MLPNN, ANFIS models in forecasting RWT.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo



POVEZANOST RADA


Ustanove:
Građevinski i arhitektonski fakultet Osijek

Profili:

Avatar Url Marijana Hadzima-Nyarko (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Zhu, Senlin; Hadzima-Nyarko, Marijana; Gao, Ang; Wang, Fangfang; Wu, Jingxiu; Wu, Shiqiang
Two hybrid data-driven models for modeling water- air temperature relationship in rivers // Environmental science and pollution research, 26 (2019), 12; 12622-12630 doi:10.1007/s11356-019-04716-y (međunarodna recenzija, članak, znanstveni)
Zhu, S., Hadzima-Nyarko, M., Gao, A., Wang, F., Wu, J. & Wu, S. (2019) Two hybrid data-driven models for modeling water- air temperature relationship in rivers. Environmental science and pollution research, 26 (12), 12622-12630 doi:10.1007/s11356-019-04716-y.
@article{article, author = {Zhu, Senlin and Hadzima-Nyarko, Marijana and Gao, Ang and Wang, Fangfang and Wu, Jingxiu and Wu, Shiqiang}, year = {2019}, pages = {12622-12630}, DOI = {10.1007/s11356-019-04716-y}, keywords = {River water temperature, Wavelet transformation, MLPNN, ANFIS, Hybrid model}, journal = {Environmental science and pollution research}, doi = {10.1007/s11356-019-04716-y}, volume = {26}, number = {12}, issn = {0944-1344}, title = {Two hybrid data-driven models for modeling water- air temperature relationship in rivers}, keyword = {River water temperature, Wavelet transformation, MLPNN, ANFIS, Hybrid model} }
@article{article, author = {Zhu, Senlin and Hadzima-Nyarko, Marijana and Gao, Ang and Wang, Fangfang and Wu, Jingxiu and Wu, Shiqiang}, year = {2019}, pages = {12622-12630}, DOI = {10.1007/s11356-019-04716-y}, keywords = {River water temperature, Wavelet transformation, MLPNN, ANFIS, Hybrid model}, journal = {Environmental science and pollution research}, doi = {10.1007/s11356-019-04716-y}, volume = {26}, number = {12}, issn = {0944-1344}, title = {Two hybrid data-driven models for modeling water- air temperature relationship in rivers}, keyword = {River water temperature, Wavelet transformation, MLPNN, ANFIS, Hybrid model} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font