Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 991667

Hyperspectral remote sensing of grapevine drought stress


Zovko, Monika; Žibrat, Uroš; Knapič, Matej; Bubalo Kovačić, Marina; Romić, Davor
Hyperspectral remote sensing of grapevine drought stress // Precision agriculture, 20 (2019), 2; 335-347 doi:10.1007/s11119-019-09640-2 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 991667 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Hyperspectral remote sensing of grapevine drought stress

Autori
Zovko, Monika ; Žibrat, Uroš ; Knapič, Matej ; Bubalo Kovačić, Marina ; Romić, Davor

Izvornik
Precision agriculture (1385-2256) 20 (2019), 2; 335-347

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Vineyard ; Irrigation ; Water stress ; Hyperspectral imagery ; Soil ; Precision agriculture
(Water stress ; Hyperspectral imagery ; Soil ; Precision agriculture)

Sažetak
In karst landscapes stony soils have little water holding capacity ; the rational use of water for irrigation therefore plays an important management role. Because the water holding capacity is not homogenous, precision agriculture approaches would enable better management decisions. This research was carried out in an experimental vineyard grown in an artificially transformed karst terrain in Dalmatia, Croatia. The experimental design included four water treatments in three replicates: (1) fully irrigated, based on 100% crop evapotranspiration (ETc) application (N100) ; (2 and (3) deficit irrigation, based on 75% and 50% ETc applications (N75 and N50, respectively) ; and (4) non-irrigated (N0). Hyperspectral images of grapevines were taken in the summer of 2016 using two spectral-radiance (W sr−1 m−2) calibrated cameras, covering wavelengths from 409 to 988 nm and 950 to 2509 nm. The four treatments were grouped into a new set consisting of: (1) drought (N0) ; and (2) irrigated (the remaining three treatments: N100, N75, and N50). The images were analyzed using Partial Least Squares- Discriminant Analysis (PLS-DA), and treatments were classified using PLS-Single Vector Machines (PLS-SVM). PLS-SVM demonstrated the capability to determine levels of grapevine drought or irrigated treatments with an accuracy of more than 97%. PLS- DA identified relevant wavelengths, which were linked to O–H, C–H, and N–H stretches in water, carbohydrates and proteins. The study presents the applicability of hyperspectral imaging for drought stress assessment in grapevines, even though temporal variability needs to be taken into account for early detection.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Poljoprivreda (agronomija)



POVEZANOST RADA


Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Zovko, Monika; Žibrat, Uroš; Knapič, Matej; Bubalo Kovačić, Marina; Romić, Davor
Hyperspectral remote sensing of grapevine drought stress // Precision agriculture, 20 (2019), 2; 335-347 doi:10.1007/s11119-019-09640-2 (međunarodna recenzija, članak, znanstveni)
Zovko, M., Žibrat, U., Knapič, M., Bubalo Kovačić, M. & Romić, D. (2019) Hyperspectral remote sensing of grapevine drought stress. Precision agriculture, 20 (2), 335-347 doi:10.1007/s11119-019-09640-2.
@article{article, author = {Zovko, Monika and \v{Z}ibrat, Uro\v{s} and Knapi\v{c}, Matej and Bubalo Kova\v{c}i\'{c}, Marina and Romi\'{c}, Davor}, year = {2019}, pages = {335-347}, DOI = {10.1007/s11119-019-09640-2}, keywords = {Vineyard, Irrigation, Water stress, Hyperspectral imagery, Soil, Precision agriculture}, journal = {Precision agriculture}, doi = {10.1007/s11119-019-09640-2}, volume = {20}, number = {2}, issn = {1385-2256}, title = {Hyperspectral remote sensing of grapevine drought stress}, keyword = {Vineyard, Irrigation, Water stress, Hyperspectral imagery, Soil, Precision agriculture} }
@article{article, author = {Zovko, Monika and \v{Z}ibrat, Uro\v{s} and Knapi\v{c}, Matej and Bubalo Kova\v{c}i\'{c}, Marina and Romi\'{c}, Davor}, year = {2019}, pages = {335-347}, DOI = {10.1007/s11119-019-09640-2}, keywords = {Water stress, Hyperspectral imagery, Soil, Precision agriculture}, journal = {Precision agriculture}, doi = {10.1007/s11119-019-09640-2}, volume = {20}, number = {2}, issn = {1385-2256}, title = {Hyperspectral remote sensing of grapevine drought stress}, keyword = {Water stress, Hyperspectral imagery, Soil, Precision agriculture} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font