Pregled bibliografske jedinice broj: 991123
Convolutional Neural Network Based Emotion Classification Using Speech Data
Convolutional Neural Network Based Emotion Classification Using Speech Data // Abstract Book of Third International Workshop on Data Science (IWDS 2018) / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb: Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2018. str. 21-23 (poster, domaća recenzija, prošireni sažetak, ostalo)
CROSBI ID: 991123 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Convolutional Neural Network Based Emotion Classification Using Speech Data
Autori
Vrebčević, Nikola ; Mijić, Igor ; Petrinović, Davor
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, ostalo
Izvornik
Abstract Book of Third International Workshop on Data Science (IWDS 2018)
/ Lončarić, Sven ; Šmuc, Tomislav - Zagreb : Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2018, 21-23
Skup
3rd International Workshop on Data Science (IWDS 2018)
Mjesto i datum
Zagreb, Hrvatska, 16.10.2018
Vrsta sudjelovanja
Poster
Vrsta recenzije
Domaća recenzija
Ključne riječi
speech ; emotion recognition ; emotion ; convolutional neural network ; recurrent neural network ; neural network
Sažetak
The human voice is a unique form of signal that is easily generated and understood. Its main purpose is a transformation of abstract thoughts into physical phenomena and vice versa. From the theory and everyday experience, it is known that verbal correspondence between people comprises information from both linguistic and paralinguistic dimensions. The emotional state of a person in many situations can be observed through paralinguistic dimension. The previous statement gives the motivation to explore in the direction of automatic methods for emotional states recognition. Modern techniques such as deep learning provide researchers with powerful tools which could be easily utilized in real-life applications. This research examines a model which comprises convolutional, recurrent and deep neural network as a single neural network which is used for emotion recognition from speech. The model is trained and evaluated on spectrograms that are calculated from utterances provided in RECOLA emotional database.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 (DATACROSS)
0036054
HRZZ-IP-2014-09-2625 - Iznad Nyquistove granice (BeyondLimit) (Seršić, Damir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb