Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 991052

A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains


Muha, Boris; Čanić, Sunčica
A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains // Journal of differential equations, 266 (2019), 12; 8370-8418 doi:10.1016/j.jde.2018.12.030 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 991052 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains

Autori
Muha, Boris ; Čanić, Sunčica

Izvornik
Journal of differential equations (0022-0396) 266 (2019), 12; 8370-8418

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Aubin-Lions-Aubin lemma ; generalized Bochner spaces ; moving domains ; fluid-structure interaction

Sažetak
This work addresses an extension of the Aubin– Lions–Simon compactness result to generalized Bochner spaces $L^2(0, T ; H(t))$, where H(t) is a family of Hilbert spaces, parameterized by t. A compactness result of this type is needed in the study of the existence of weak solutions to nonlinear evolution problems governed by partial differential equations defined on moving domains. We identify the conditions on the regularity of the domain motion in time under which our extension of the Aubin–Lions– Simon compactness result holds. Concrete examples of the application of the compactness theorem are presented, including a classical problem for the incompressible, Navier–Stokes equations defined on a given non-cylindrical domain, and a class of fluid–structure interaction problems for the incompressible, Navier–Stokes equations, coupled to the elastodynamics of a Koiter shell. The compactness result presented in this manuscript is crucial in obtaining constructive existence proofs to nonlinear, moving boundary problems, using Rothe's method.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Boris Muha (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Muha, Boris; Čanić, Sunčica
A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains // Journal of differential equations, 266 (2019), 12; 8370-8418 doi:10.1016/j.jde.2018.12.030 (međunarodna recenzija, članak, znanstveni)
Muha, B. & Čanić, S. (2019) A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains. Journal of differential equations, 266 (12), 8370-8418 doi:10.1016/j.jde.2018.12.030.
@article{article, author = {Muha, Boris and \v{C}ani\'{c}, Sun\v{c}ica}, year = {2019}, pages = {8370-8418}, DOI = {10.1016/j.jde.2018.12.030}, keywords = {Aubin-Lions-Aubin lemma, generalized Bochner spaces, moving domains, fluid-structure interaction}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2018.12.030}, volume = {266}, number = {12}, issn = {0022-0396}, title = {A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains}, keyword = {Aubin-Lions-Aubin lemma, generalized Bochner spaces, moving domains, fluid-structure interaction} }
@article{article, author = {Muha, Boris and \v{C}ani\'{c}, Sun\v{c}ica}, year = {2019}, pages = {8370-8418}, DOI = {10.1016/j.jde.2018.12.030}, keywords = {Aubin-Lions-Aubin lemma, generalized Bochner spaces, moving domains, fluid-structure interaction}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2018.12.030}, volume = {266}, number = {12}, issn = {0022-0396}, title = {A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains}, keyword = {Aubin-Lions-Aubin lemma, generalized Bochner spaces, moving domains, fluid-structure interaction} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font