Pregled bibliografske jedinice broj: 990776
Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns
Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns // Remote Sensing, 11 (2019), 6; 655, 13 doi:10.3390/rs11060655 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 990776 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns
Autori
Kranjčić, Nikola ; Medak, Damir ; Župan, Robert ; Rezo, Milan
Izvornik
Remote Sensing (2072-4292) 11
(2019), 6;
655, 13
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
machine learning ; support vector machine ; kernels ; green urban areas extraction ; satellite images
Sažetak
The most commonly used model for analyzing satellite imagery is the Support Vector Machine (SVM). Since there are a large number of possible variables for use in SVM, this paper will provide a combination of parameters that fit best for extracting green urban areas from Copernicus mission satellite images. This paper aims to provide a combination of parameters to extract green urban areas with the highest degree of accuracy, in order to speed up urban planning and ultimately improve town environments. Two different towns in Croatia were investigated, and the results provide an optimal combination of parameters for green urban areas extraction with an overall kappa index of 0.87 and 0.89, which demonstrates a very high classification accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Geodezija
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5621 - Geoprostorno praćenje zelene infrastrukture na temelju terestričkih, zračnih i satelitskih snimaka (GEMINI) (Medak, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Geodetski fakultet, Zagreb,
Geotehnički fakultet, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- CAB Abstracts
- GeoRef
- INSPEC