Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 990776

Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns


Kranjčić, Nikola; Medak, Damir; Župan, Robert; Rezo, Milan
Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns // Remote Sensing, 11 (2019), 6; 655, 13 doi:10.3390/rs11060655 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 990776 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns

Autori
Kranjčić, Nikola ; Medak, Damir ; Župan, Robert ; Rezo, Milan

Izvornik
Remote Sensing (2072-4292) 11 (2019), 6; 655, 13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
machine learning ; support vector machine ; kernels ; green urban areas extraction ; satellite images

Sažetak
The most commonly used model for analyzing satellite imagery is the Support Vector Machine (SVM). Since there are a large number of possible variables for use in SVM, this paper will provide a combination of parameters that fit best for extracting green urban areas from Copernicus mission satellite images. This paper aims to provide a combination of parameters to extract green urban areas with the highest degree of accuracy, in order to speed up urban planning and ultimately improve town environments. Two different towns in Croatia were investigated, and the results provide an optimal combination of parameters for green urban areas extraction with an overall kappa index of 0.87 and 0.89, which demonstrates a very high classification accuracy.

Izvorni jezik
Engleski

Znanstvena područja
Geodezija



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-5621 - Geoprostorno praćenje zelene infrastrukture na temelju terestričkih, zračnih i satelitskih snimaka (GEMINI) (Medak, Damir, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Geodetski fakultet, Zagreb,
Geotehnički fakultet, Varaždin

Profili:

Avatar Url Milan Rezo (autor)

Avatar Url Robert Župan (autor)

Avatar Url Nikola Kranjčić (autor)

Avatar Url Damir Medak (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Kranjčić, Nikola; Medak, Damir; Župan, Robert; Rezo, Milan
Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns // Remote Sensing, 11 (2019), 6; 655, 13 doi:10.3390/rs11060655 (međunarodna recenzija, članak, znanstveni)
Kranjčić, N., Medak, D., Župan, R. & Rezo, M. (2019) Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns. Remote Sensing, 11 (6), 655, 13 doi:10.3390/rs11060655.
@article{article, author = {Kranj\v{c}i\'{c}, Nikola and Medak, Damir and \v{Z}upan, Robert and Rezo, Milan}, year = {2019}, pages = {13}, DOI = {10.3390/rs11060655}, chapter = {655}, keywords = {machine learning, support vector machine, kernels, green urban areas extraction, satellite images}, journal = {Remote Sensing}, doi = {10.3390/rs11060655}, volume = {11}, number = {6}, issn = {2072-4292}, title = {Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns}, keyword = {machine learning, support vector machine, kernels, green urban areas extraction, satellite images}, chapternumber = {655} }
@article{article, author = {Kranj\v{c}i\'{c}, Nikola and Medak, Damir and \v{Z}upan, Robert and Rezo, Milan}, year = {2019}, pages = {13}, DOI = {10.3390/rs11060655}, chapter = {655}, keywords = {machine learning, support vector machine, kernels, green urban areas extraction, satellite images}, journal = {Remote Sensing}, doi = {10.3390/rs11060655}, volume = {11}, number = {6}, issn = {2072-4292}, title = {Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns}, keyword = {machine learning, support vector machine, kernels, green urban areas extraction, satellite images}, chapternumber = {655} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • CAB Abstracts
  • GeoRef
  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font