Pregled bibliografske jedinice broj: 990276
A Reinforcement Learning Based Algorithm for Robot Action Planning
A Reinforcement Learning Based Algorithm for Robot Action Planning // Advances in Service and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science, vol 67. / Aspragathos, N. ; Koustoumpardis, P ; , Moulianitis, V (ur.).
Cham: Springer, 2018. str. 493-503 doi:10.1007/978-3-030-00232-9_52 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 990276 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Reinforcement Learning Based Algorithm for Robot Action Planning
Autori
Švaco, Marko ; Jerbić, Bojan ; Polančec, Mateo ; Šuligoj, Filip
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Advances in Service and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science, vol 67.
/ Aspragathos, N. ; Koustoumpardis, P ; , Moulianitis, V - Cham : Springer, 2018, 493-503
ISBN
978-3-030-00231-2
Skup
Advances in Service and Industrial Robotics (RAAD 2018)
Mjesto i datum
Patras, Grčka, 06.06.2018. - 08.06.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Robotics ; Reinforcement learning ; Autonomous robot
Sažetak
The learning process that arises in response to the visual perception of the environment is the starting point for numerous research in the field of applied and cognitive robotics. In this research, we propose a reinforcement learning based action planning algorithm for the assembly of spatial structures with an autonomous robot in an unstructured environment. We have developed an algorithm based on temporal difference learning using linear base functions for the approximation of the state-value-function because of a large number of discrete states that the autonomous robot can encounter. The aim is to find the optimal sequence of actions that the agent (robot) needs to take in order to move objects in a 2D environment until they reach the predefined target state. The algorithm is divided into two parts. In the first part, the goal is to learn the parameters in order to properly approximate the Q function. In the second part of the algorithm, the obtained parameters are used to define the sequence of actions for a UR3 robot arm. We present a preliminary validation of the algorithm in an experimental laboratory scenario.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-4192 - Novi koncept primijenjene kognitivne robotike u kliničkoj neuroznanosti (ACRON) (Jerbić, Bojan, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus