Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 987464

Text mining for big data analysis in financial sector: a literature review


Pejić Bach, Mirjana; Krstić, Živko; Seljan, Sanja; Turulja, Lejla
Text mining for big data analysis in financial sector: a literature review // Sustainability, 11 (2019), 5; 1-27 doi:10.3390/su11051277 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 987464 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Text mining for big data analysis in financial sector: a literature review

Autori
Pejić Bach, Mirjana ; Krstić, Živko ; Seljan, Sanja ; Turulja, Lejla

Izvornik
Sustainability (2071-1050) 11 (2019), 5; 1-27

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
big data ; text mining ; financial sector ; data science ; language

Sažetak
Big data technologies have a strong impact on different industries, starting from the last decade, which continues nowadays, with the tendency to become omnipresent. The financial sector, as most of the other sectors, concentrated their operating activities mostly on structured data investigation. However, with the support of big data technologies, information stored in diverse sources of semi- structured and unstructured data could be harvested. Recent research and practice indicate that such information can be interesting for the decision-making process. Questions about how and to what extent research on data mining in the financial sector has developed and which tools are used for these purposes remains largely unexplored. This study aims to answer three research questions: (i) What is the intellectual core of the field? (ii) Which techniques are used in the financial sector for textual mining, especially in the era of the Internet, big data, and social media? (iii) Which data sources are the most often used for text mining in the financial sector, and for which purposes? In order to answer these questions, a qualitative analysis of literature is carried out using a systematic literature review, citation and co- citation analysis.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti

Napomena
This article belongs to the Special Issue Expert Systems: Applications of Business Intelligence in Big Data Environments



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Zagreb,
Filozofski fakultet, Zagreb

Profili:

Avatar Url Mirjana Pejić Bach (autor)

Avatar Url Sanja Seljan (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com www.mdpi.com

Citiraj ovu publikaciju:

Pejić Bach, Mirjana; Krstić, Živko; Seljan, Sanja; Turulja, Lejla
Text mining for big data analysis in financial sector: a literature review // Sustainability, 11 (2019), 5; 1-27 doi:10.3390/su11051277 (međunarodna recenzija, članak, znanstveni)
Pejić Bach, M., Krstić, Ž., Seljan, S. & Turulja, L. (2019) Text mining for big data analysis in financial sector: a literature review. Sustainability, 11 (5), 1-27 doi:10.3390/su11051277.
@article{article, author = {Peji\'{c} Bach, Mirjana and Krsti\'{c}, \v{Z}ivko and Seljan, Sanja and Turulja, Lejla}, year = {2019}, pages = {1-27}, DOI = {10.3390/su11051277}, keywords = {big data, text mining, financial sector, data science, language}, journal = {Sustainability}, doi = {10.3390/su11051277}, volume = {11}, number = {5}, issn = {2071-1050}, title = {Text mining for big data analysis in financial sector: a literature review}, keyword = {big data, text mining, financial sector, data science, language} }
@article{article, author = {Peji\'{c} Bach, Mirjana and Krsti\'{c}, \v{Z}ivko and Seljan, Sanja and Turulja, Lejla}, year = {2019}, pages = {1-27}, DOI = {10.3390/su11051277}, keywords = {big data, text mining, financial sector, data science, language}, journal = {Sustainability}, doi = {10.3390/su11051277}, volume = {11}, number = {5}, issn = {2071-1050}, title = {Text mining for big data analysis in financial sector: a literature review}, keyword = {big data, text mining, financial sector, data science, language} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font