Pregled bibliografske jedinice broj: 986532
Apriori estimates for fractional diffusion equation
Apriori estimates for fractional diffusion equation // Optimization Letters, 13 (2019), 8; 1793-1801 doi:10.1007/s11590-018-1332-0 (meÄunarodna recenzija, Älanak, znanstveni)
CROSBI ID: 986532 Za ispravke kontaktirajte CROSBI podrŔku putem web obrasca
Naslov
Apriori estimates for fractional diffusion
equation
Autori
Burazin, KreÅ”imir ; MitroviÄ, Darko
Izvornik
Optimization Letters (1862-4472) 13
(2019), 8;
1793-1801
Vrsta, podvrsta i kategorija rada
Radovi u Äasopisima, Älanak, znanstveni
KljuÄne rijeÄi
Fractional Laplacean ; Fractional diffusion ; Apriori estimates
Sažetak
We derive šæ2([0, š) ; š»š¼/2ššš(āš)), š¼ā[1, 2), apriori estimate for solutions to the fractional or anomalous diffusion equation using a generalization of the Leibnitz rule for the fractional Laplacean. The equation models a wide range of physical phenomena and, in particular, it is a linearized variant of the fractional porous media equation. The apriori estimates can be further used to rate convergence of corresponding numerical schemes, in the control and optimization theory and for various non-linear fractional PDEs. We use them here to prove existence of solution to a Cauchy problem for the fractional porous media equationas well as a result concerning optimal control.
Izvorni jezik
Engleski
Znanstvena podruÄja
Matematika
POVEZANOST RADA
Ustanove:
SveuÄiliÅ”te u Osijeku, Odjel za matematiku
Citiraj ovu publikaciju:
Äasopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus