Pregled bibliografske jedinice broj: 984843
A Novel Method for Statistical Pattern Recognition Using the Network Theory and a New Hybrid System of Machine Learning
A Novel Method for Statistical Pattern Recognition Using the Network Theory and a New Hybrid System of Machine Learning // Materiali in tehnologije, 53 (2019), 1; 95-100 doi:10.17222/mit.2018.116 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 984843 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Novel Method for Statistical Pattern Recognition Using the Network Theory and a New Hybrid System of Machine Learning
Autori
Babič, Matej ; Prsić, Dragan ; Jurković, Zoran ; Lajos, Borbás ; Ipšić-Martinčić, Sanda ; Lhotská, Lenka ; Ocampo, Lanndon
Izvornik
Materiali in tehnologije (1580-2949) 53
(2019), 1;
95-100
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
hybrid machine learning ; statistical pattern recognition ; network theory ; fractals
Sažetak
The increase in wear resistance of cast irons after laser treatment is due not only to the corresponding structural and phase composition, but also to the improvement in the friction conditions due to the graphite retained in the laser impact zone. Also, laser hardening increases the wear resistance of steels and some other alloys in terms of the friction in alkaline and acidic environments. In this article we present a new method for a hybrid system of machine learning using a new method for statistical pattern recognition through network theory in robot laser hardening (RLH). We combined the method of multiple regression, the method of a support vector machine and the method of a neural network. For statistical pattern recognition we use the topological properties of network theory. The even distribution of the topological property16-300 triads throughout the various levels of the organization and network in the microstructure of RLH indicates that there is a strong linkage across the network and an active connection among the needles of martensite.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Strojarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Tehnički fakultet, Rijeka,
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus