Pregled bibliografske jedinice broj: 982804
Traffic Scene Classification on a Representation Budget
Traffic Scene Classification on a Representation Budget // Ieee transactions on intelligent transportation systems, 21 (2020), 1; 336-345 doi:10.1109/TITS.2019.2891995 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 982804 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Traffic Scene Classification on a Representation Budget
Autori
Sikirić, Ivan ; Brkić, Karla ; Bevandić, Petra ; Krešo, Ivan ; Krapac, Josip ; Šegvić, Siniša
Izvornik
Ieee transactions on intelligent transportation systems (1524-9050) 21
(2020), 1;
336-345
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Visualization, Training, Feature extraction, Image representation, Servers, Global Positioning System, Architecture, Computer vision, intelligent vehicles, image classification.
Sažetak
Visual cues can be used alongside GPS positioning and digital maps to improve understanding of vehicle environment in fleet management systems. Such systems are limited both in terms of bandwidth and storage space, so minimizing the size of transmitted and stored visual data is a priority. In this paper, we present efficient strategies for computing very short image representations suitable for classifying various types of traffic scenes in fleet management systems. We anticipate that the set of interesting classes will change over time, so we consider image representations that can be trained without knowing the labels of the target dataset. We empirically evaluate and compare the presented methods on a contributed dataset of 11447 labeled traffic scenes. Our results indicate that excellent classification results can be achieved with very short image representations, and that fine-tuning on the target dataset image data is not mandatory. Image descriptors can be as short as 128 components while still offering good performance, even in presence of adverse weather or illumination conditions.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ I-2433-2014
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Karla Brkić
(autor)
Ivan Krešo
(autor)
Josip Krapac
(autor)
Petra Bevandić
(autor)
Siniša Šegvić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus