Pregled bibliografske jedinice broj: 982704
Analysis and forecast of Croatian tourism demand seasonality
Analysis and forecast of Croatian tourism demand seasonality // 24 Biennial international congress tourism and hospitality industry 2018 / Milohnić, Ines ; Smolčić Jurdana, Dora (ur.).
Opatija: Fakultet za menadžment u turizmu i ugostiteljstvu Sveučilišta u Rijeci, 2018. str. 273-284 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 982704 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis and forecast of Croatian tourism demand
seasonality
Autori
Mihalinčić, Krešo ; Mrša Haber, Iva
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Izvornik
24 Biennial international congress tourism and hospitality industry 2018
/ Milohnić, Ines ; Smolčić Jurdana, Dora - Opatija : Fakultet za menadžment u turizmu i ugostiteljstvu Sveučilišta u Rijeci, 2018, 273-284
Skup
24. bijenalni međunarodni kongres Turizam i hotelska industrija: trendovi i izazovi = 24th Biennial International Congress Tourism & Hospitality Industry - Trends and Challenges
Mjesto i datum
Opatija, Hrvatska, 26.04.2018. - 27.04.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
tourism ; demand ; Croatia ; ARIMA modeling ; seasonality ; forecasting
Sažetak
Purpose – Investigate the issue of seasonality of Croatian tourism demand. Design – We have established the seasonality of Croatian tourism as a whole by measuring monthly overnight stays (“overnights”) using advanced automated as well as original methods. We also investigated land vs. coast contributions to Croatian hospitality industry. Methodology – Seasonal ARIMA (SARIMA) was utilized to analyze above data and forecast future demand in terms of the “overnights” time series. Approach – Having proven the standard SARIMA automated methods deficient, we developed an alternative approach and proved its reliability by a comparison to actual data. Findings – The smoothing nature of ARIMA forecasting algorithm leads to a mitigation of seasonal effects in its forecast. Therefore, an alternative approach is called for. Originality of the research – Due to the apparent shortcomings of ARIMA forecasting we developed an alternative model that pays due attention to the strong seasonal effects of tourism demand common to Mediterranean countries. Nonetheless, we anchored our approach in some existing concepts (e.g. random walk). Still, our concept of “tiers” that mimic standard quarters but preserve the information on crucial differences between peak and shoulder months is, for all our research, original. Our results demonstrate clearly that we have found a fine balance between automated methods and expert judgment.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija
POVEZANOST RADA
Ustanove:
Fakultet za menadžment u turizmu i ugostiteljstvu, Opatija
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Social Sciences & Humanities (CPCI-SSH)