Pregled bibliografske jedinice broj: 980281
On existence of generic cusp forms on semisimple algebraic groups
On existence of generic cusp forms on semisimple algebraic groups // Transactions of the American mathematical society, 370 (2018), 7; 4731-4757 doi:10.1090/tran/7081 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 980281 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On existence of generic cusp forms on semisimple algebraic groups
Autori
Moy, Allen ; Muić, Goran
Izvornik
Transactions of the American mathematical society (0002-9947) 370
(2018), 7;
4731-4757
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Cuspidal automorphic forms ; Poincar'e series ; Fourier coefficients
Sažetak
In this paper we discuss the existence of certain classes of cuspidal automorphic representations having non-zero Fourier coefficients for a general semisimple algebraic group $ G$ defined over a number field $ k$ such that its Archimedean group $ G_\infty $ is not compact. When $ G$ is quasi-split over $ k$, we obtain a result on existence of generic cuspidal automorphic representations which generalize results of Vignéras, Henniart, and Shahidi. We also discuss: (i) the existence of cuspidal automorphic forms with non-zero Fourier coefficients for congruence of subgroups of $ G_\infty $, and (ii) applications related to the work of Bushnell and Henniart on generalized Whittaker models.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Goran Muić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus