Pregled bibliografske jedinice broj: 980279
On the boundary theory of subordinate killed Levy processes
On the boundary theory of subordinate killed Levy processes // Potential analysis, 53 (2020), 131-181 doi:10.1007/s11118-019-09762-2 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 980279 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the boundary theory of subordinate killed Levy processes
Autori
Kim, Panki ; Song, Renming ; Vondraček, Zoran
Izvornik
Potential analysis (0926-2601) 53
(2020);
131-181
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Levy processes, subordination, Green functions, jumping kernels, harmonic functions, Harnack inequality, boundary Harnack principle, Carleson estimate
Sažetak
Let $Z$ be a subordinate Brownian motion in $\R^d$, $d\ge 2$, via a subordinator with Laplace exponent $\phi$. We kill the process $Z$ upon exiting a bounded open set $D\subset \R^d$ to obtain the killed process $Z^D$, and then we subordinate the process $Z^D$ by a subordinator with Laplace exponent $\psi$. The resulting process is denoted by $Y^D$. Both $\phi$ and $\psi$ are assumed to satisfy certain weak scaling conditions at infinity. We study the potential theory of $Y^D$, in particular the boundary theory. First, in case that $D$ is a $\kappa$-fat bounded open set, we show that the Harnack inequality holds. If, in addition, $D$ satisfies the local exterior volume condition, then we prove the Carleson estimate. In case $D$ is a smooth open set and the lower weak scaling index of $\psi$ is strictly larger than $1/2$, we establish the boundary Harnack principle with explicit decay rate near the boundary of $D$. On the other hand, when $\psi(\lambda)=\lambda^{; ; ; ; \gamma}; ; ; ; $ with $\gamma\in (0, 1/2]$, we show that the boundary Harnack principle near the boundary of $D$ fails for any bounded $C^{; ; ; ; 1, 1}; ; ; ; $ open set $D$. Our results give the first example where the Carleson estimate holds true, but the boundary Harnack principle does not. One of the main ingredients in the proofs is the sharp two-sided estimates of the Green function of $Y^D$. Under an additional condition on $\psi$, we establish sharp two-sided estimates of the jumping kernel of $Y^D$ which exhibit some unexpected boundary behavior. We also prove a boundary Harnack principle for non-negative functions harmonic in a smooth open set $E$ strictly contained in $D$, showing that the behavior of $Y^D$ in the interior of $D$ is determined by the composition $\psi\circ \phi$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zoran Vondraček
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus