Pregled bibliografske jedinice broj: 979456
Spectral methods for growth curve clustering
Spectral methods for growth curve clustering // Central European journal of operations research, 26 (2018), 3; 715-737 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 979456 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Spectral methods for growth curve clustering
Autori
Majstorović, Snježana ; Sabo, Kristian ; Jung, Johannes ; Klarić, Matija
Izvornik
Central European journal of operations research (1435-246X) 26
(2018), 3;
715-737
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Curve clustering ; Similarity graph ; Laplacian matrix ; Modularity matrix ; Spectral methods
Sažetak
The growth curve clustering problem is analyzed and its connection with the spectral relaxation method is described. For a given set of growth curves and similarity function, a similarity matrix is defined, from which the corresponding similarity graph is constructed. It is shown that a nearly optimal growth curve partition can be obtained from the eigendecomposition of a specific matrix associated with a similarity graph. The results are illustrated and analyzed on the set of synthetically generated growth curves. One real- world problem is also given.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- EconLit