Pregled bibliografske jedinice broj: 979343
Robust Cochlear-Model-Based Speech Recognition
Robust Cochlear-Model-Based Speech Recognition // Computers, 8 (2019), 1; 5, 11 doi:10.3390/computers8010005 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 979343 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Robust Cochlear-Model-Based Speech Recognition
Autori
Russo, Mladen ; Stella, Maja ; Sikora, Marjan ; Pekić, Vesna
Izvornik
Computers (2073-431X) 8
(2019), 1;
5, 11
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
speech recognition ; cochlea ; Gammatone filterbank ; IHC ; HMM
Sažetak
Accurate speech recognition can provide a natural interface for human–computer interaction. Recognition rates of the modern speech recognition systems are highly dependent on background noise levels and a choice of acoustic feature extraction method can have a significant impact on system performance. This paper presents a robust speech recognition system based on a front-end motivated by human cochlear processing of audio signals. In the proposed front-end, cochlear behavior is first emulated by the filtering operations of the gammatone filterbank and subsequently by the Inner Hair cell (IHC) processing stage. Experimental results using a continuous density Hidden Markov Model (HMM) recognizer with the proposed Gammatone Hair Cell (GHC) coefficients are lower for clean speech conditions, but demonstrate significant improvement in performance in noisy conditions compared to standard Mel-Frequency Cepstral Coefficients (MFCC) baseline.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2014-09-3875 - Pametna okruženja za poboljšanje kvalitete života (ELISE) (Russo, Mladen, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split