Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 976629

A convolutional neural network based approach to QRS detection


Šarlija, Marko; Jurišić, Fran; Popović, Siniša
A convolutional neural network based approach to QRS detection // Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis / Kovačić, Stanislav ; Lončarić, Sven ; Kristian, Matej ; Štruc, Vitomir ; Vučić, Mladen (ur.).
Zagreb: Sveučilište u Zagrebu, 2017. str. 121-125 doi:10.1109/ISPA.2017.8073581 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 976629 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A convolutional neural network based approach to QRS detection

Autori
Šarlija, Marko ; Jurišić, Fran ; Popović, Siniša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis / Kovačić, Stanislav ; Lončarić, Sven ; Kristian, Matej ; Štruc, Vitomir ; Vučić, Mladen - Zagreb : Sveučilište u Zagrebu, 2017, 121-125

ISBN
978-1-5090-4011-7

Skup
10th International Symposium on Image and Signal Processing and Analysis

Mjesto i datum
Ljubljana, Slovenija, 18.09.2017. - 20.09.2017

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
electrocardiogram (ECG), QRS complex detection, convolutional neural networks (CNN), clustering

Sažetak
In this paper we present a QRS detection algorithm based on pattern recognition as well as a new approach to ECG baseline wander removal and signal normalization. Each point of the zero-centred and normalized ECG signal is a QRS candidate, while a 1-D CNN classifier serves as a decision rule. Positive outputs from the CNN are clustered to form final QRS detections. The data is obtained from the 44 non-pacemaker recordings of the MIT-BIH arrhythmia database. Classifier was trained on 22 recordings and the remaining ones are used for performance evaluation. Our method achieves a sensitivity of 99.81% and 99.93% positive predictive value, which is comparable with most state-of-the-art solutions. This approach opens new possibilities for improvements in heartbeat classification as well as P and T wave detection problems.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Marko Šarlija (autor)

Avatar Url Siniša Popović (autor)

Poveznice na cjeloviti tekst rada:

doi www.researchgate.net ieeexplore.ieee.org

Citiraj ovu publikaciju:

Šarlija, Marko; Jurišić, Fran; Popović, Siniša
A convolutional neural network based approach to QRS detection // Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis / Kovačić, Stanislav ; Lončarić, Sven ; Kristian, Matej ; Štruc, Vitomir ; Vučić, Mladen (ur.).
Zagreb: Sveučilište u Zagrebu, 2017. str. 121-125 doi:10.1109/ISPA.2017.8073581 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Šarlija, M., Jurišić, F. & Popović, S. (2017) A convolutional neural network based approach to QRS detection. U: Kovačić, S., Lončarić, S., Kristian, M., Štruc, V. & Vučić, M. (ur.)Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis doi:10.1109/ISPA.2017.8073581.
@article{article, author = {\v{S}arlija, Marko and Juri\v{s}i\'{c}, Fran and Popovi\'{c}, Sini\v{s}a}, year = {2017}, pages = {121-125}, DOI = {10.1109/ISPA.2017.8073581}, keywords = {electrocardiogram (ECG), QRS complex detection, convolutional neural networks (CNN), clustering}, doi = {10.1109/ISPA.2017.8073581}, isbn = {978-1-5090-4011-7}, title = {A convolutional neural network based approach to QRS detection}, keyword = {electrocardiogram (ECG), QRS complex detection, convolutional neural networks (CNN), clustering}, publisher = {Sveu\v{c}ili\v{s}te u Zagrebu}, publisherplace = {Ljubljana, Slovenija} }
@article{article, author = {\v{S}arlija, Marko and Juri\v{s}i\'{c}, Fran and Popovi\'{c}, Sini\v{s}a}, year = {2017}, pages = {121-125}, DOI = {10.1109/ISPA.2017.8073581}, keywords = {electrocardiogram (ECG), QRS complex detection, convolutional neural networks (CNN), clustering}, doi = {10.1109/ISPA.2017.8073581}, isbn = {978-1-5090-4011-7}, title = {A convolutional neural network based approach to QRS detection}, keyword = {electrocardiogram (ECG), QRS complex detection, convolutional neural networks (CNN), clustering}, publisher = {Sveu\v{c}ili\v{s}te u Zagrebu}, publisherplace = {Ljubljana, Slovenija} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Conference Proceedings Citation Index - Science (CPCI-S)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font