Pregled bibliografske jedinice broj: 971127
Annotating Exam Questions Through Automatic Learning Concept Classification
Annotating Exam Questions Through Automatic Learning Concept Classification // 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2018) / Rožić, Nikola ; Lorenz, Pascal (ur.).
Split, Hrvatska; Supetar, Hrvatska: Curran Associates, 2018. str. 123-129 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 971127 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Annotating Exam Questions Through Automatic Learning Concept Classification
Autori
Pintar, Damir ; Begušić, Domagoj ; Škopljanac- Mačina, Frano ; Vranić, Mihaela
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2018)
/ Rožić, Nikola ; Lorenz, Pascal - : Curran Associates, 2018, 123-129
ISBN
978-1-5386-6770-5
Skup
26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2018)
Mjesto i datum
Split, Hrvatska; Supetar, Hrvatska, 13.09.2018. - 15.09.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
educational data mining ; exam queries ; learning concepts ; classification ; e-learning
Sažetak
Educational data mining (or EDM) is an emerging interdisciplinary research field concerned with developing methods for exploring the unique types of data encountered in the field of education. One of the most valuable sources in the educational domain are repositories of exam queries, which were usually designed for evaluating how efficient the learning process was in transferring knowledge about certain taught concepts, but which commonly do not contain any additional information about concepts they are related to beyond the text of the query and offered answers. In this paper we present results of our research which involves using text mining methods to automatically annotate existing exam queries with information about concepts they relate to, enabling better insight into learning concept adoption after those queries are used in a exam. We apply this approach to real-life exam questions from a high education university course and show validation of our results performed in consultation with experts from the educational domain.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2014-09-2051 - Uporaba metoda i otvorenih tehnologija dubinske analize podataka za unaprijeđenje infrastrukture elektroničkog učenja (eduMINE) (Pintar, Damir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Domagoj Begušić
(autor)
Mihaela Vranić
(autor)
Damir Pintar
(autor)
Frano Škopljanac-Mačina
(autor)