Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 970093

Sensitive data discovery in relational databases


Urh, Marko
Sensitive data discovery in relational databases, 2018., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb


CROSBI ID: 970093 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Sensitive data discovery in relational databases

Autori
Urh, Marko

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski

Fakultet
Fakultet elektrotehnike i računarstva

Mjesto
Zagreb

Datum
05.07

Godina
2018

Stranica
62

Mentor
Milašinović, Boris

Ključne riječi
Data discovery ; GDPR ; Data protection ; Software analysis ; European regulative ; Relational databases ; Sensitive data

Sažetak
Considering the interconnectivity that exists today between business processes and as the size of an organization grows, data is placed in several systems, applications, databases, and shared files, making its protection, authentication, and confidentiality along with the need to comply with regulations, meet auditor demands, and minimize data risk adds to the challenge. To meet these needs, the focus must shift to the data itself. Traditional security solutions that focus on the external threat are not the answer. Data-focused technology is required. This can also often happen in the context of mergers and acquisitions (expanding) or when legacy systems have outlasted their original owners. As a result, sensitive data may exist beyond the knowledge of the person who currently owns that data. This is a common yet extremely vulnerable scenario, since you cannot protect sensitive data unless you know it exists. Understanding where data is located is the foundation of a sound framework for assessing governance and compliance risk. Therefore, discovery and classification processes become important and critical component of risk mitigation as the size of an organization grows and sensitive information like credit card numbers and personal financial data propagate to multiple locations.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb


Citiraj ovu publikaciju:

Urh, Marko
Sensitive data discovery in relational databases, 2018., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
Urh, M. (2018) 'Sensitive data discovery in relational databases', diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb.
@phdthesis{phdthesis, author = {Urh, Marko}, year = {2018}, pages = {62}, keywords = {Data discovery, GDPR, Data protection, Software analysis, European regulative, Relational databases, Sensitive data}, title = {Sensitive data discovery in relational databases}, keyword = {Data discovery, GDPR, Data protection, Software analysis, European regulative, Relational databases, Sensitive data}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Urh, Marko}, year = {2018}, pages = {62}, keywords = {Data discovery, GDPR, Data protection, Software analysis, European regulative, Relational databases, Sensitive data}, title = {Sensitive data discovery in relational databases}, keyword = {Data discovery, GDPR, Data protection, Software analysis, European regulative, Relational databases, Sensitive data}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font