Pregled bibliografske jedinice broj: 969641
Deep self-normalizing networks for credit risk assessment
Deep self-normalizing networks for credit risk assessment // Robust Techniques in Quantitative Finance
Oxford, Ujedinjeno Kraljevstvo, 2018. str. 1-5 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 969641 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep self-normalizing networks for credit risk assessment
Autori
Mrčela, Lovre ; Merćep, Andro ; Ljubičić, Karmela ; Birov, Matija ; Kostanjčar, Zvonko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Robust Techniques in Quantitative Finance
/ - , 2018, 1-5
Skup
Robust Techniques in Quantitative Finance
Mjesto i datum
Oxford, Ujedinjeno Kraljevstvo, 03.09.2018. - 07.09.2018
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
self-normalizing nework ; credit risk assessment ; behavioral model
Sažetak
Credit risk assessment process includes evaluation of loan applications (approval of acceptable clients and rejection of clients that are likely to default) using application models, as well as monitoring behavior of existing clients using behavioral models. In this article we propose a deep self-normalizing neural network behavioral model trained on a large contract-level dataset. The proposed deep learning model outperformed conventional logistic regression based methods, with out-of-sample Somers’ D score of 84.08%. Moreover, when comparing accuracy scores with regard to actual month of default in the future, deep model once again exhibits higher predictive power.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Lovre Mrčela
(autor)
Andro Merćep
(autor)
Karmela Šarlija
(autor)
Zvonko Kostanjčar
(autor)