Pregled bibliografske jedinice broj: 969160
Relevance of empirical mode decomposition for fetal heartbeat detection on smartphone devices
Relevance of empirical mode decomposition for fetal heartbeat detection on smartphone devices // The 8th Congress of the Alps Adria Acoustics Association – Conference Proceedings / Horvat, Marko ; Krhen, Miljenko (ur.).
Zagreb: Hrvatsko akustičko društvo (HAD), 2018. str. 64-69 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 969160 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Relevance of empirical mode decomposition for fetal heartbeat detection on smartphone devices
Autori
Vican, Ivan ; Kreković, Gordan ; Jambrošić, Kristian
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
The 8th Congress of the Alps Adria Acoustics Association – Conference Proceedings
/ Horvat, Marko ; Krhen, Miljenko - Zagreb : Hrvatsko akustičko društvo (HAD), 2018, 64-69
ISBN
978-953-95097-2-7
Skup
The 8th Congress of the Alps Adria Acoustics Association
Mjesto i datum
Zagreb, Hrvatska, 20.09.2018. - 21.09.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
phonocardiography ; fetal heartbeat ; feature extraction ; feature ranking ; feature selection ; machine learning ; prenatal care
Sažetak
Fetal phonocardiography is a re-emerging method for extracting fetal heartbeat signals with a strong potential to be used as an easily accessible system in prenatal monitoring, especially if employed in conjunction with widespread electronic hardware. Since smartphone devices are going through rapid development of their processing power, sensory capabilities and network connectivity, they are becoming a powerful yet underutilized biomedical tool. Within this study we propose novel features for automatic fetal heartbeat detection based on intrinsic mode functions (IMF) gained through empirical mode decomposition. In order to show that more accurate detection can be achieved with IMF- based features added to the conventional set of audio features, we assessed feature relevance and usefulness using ranking and selection techniques. The results suggest that IMF-based features are relevant for the classification task and can improve prediction accuracy by 3.28%.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb