Pregled bibliografske jedinice broj: 968730
How to Make Paradoxes in Set Theory
How to Make Paradoxes in Set Theory // 2nd Croatian Congress of Mathematics
Zagreb: Hrvatsko matematičko društvo, 2000. str. 40-40 (predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)
CROSBI ID: 968730 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
How to Make Paradoxes in Set Theory
Autori
Čulina, Boris
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
2nd Croatian Congress of Mathematics
/ - Zagreb : Hrvatsko matematičko društvo, 2000, 40-40
Skup
2nd Croatian Congress of Mathematics
Mjesto i datum
Zagreb, Hrvatska, 15.06.2000. - 17.06.2000
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Podatak o recenziji nije dostupan
Ključne riječi
Set theory ; Paradoxes ; Creative Choice
Sažetak
Sentence which claims that some property P doesn't have the associated set can be reformulated in a logically equivalent sentence which gives some logical understanding why it is so. It says that the property has a creative choice on it. It means that for every set of objects with property P there is an object with property P outside the set. Among other things it gives instructions how to make paradoxes - by investigating set operations we are looking for properties with creative choice on them. Old paradoxes are investigated in this way, some new are made, and some general results are exhibeted.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Filozofija