Pregled bibliografske jedinice broj: 968621
Prediction of HSV color model parameter values of cloud movement picture based on artificial neural networks
Prediction of HSV color model parameter values of cloud movement picture based on artificial neural networks // Zbornik radova 41. međunarodnog skupa za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku
Opatija, Hrvatska, 2018. str. 1110-1114 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), stručni)
CROSBI ID: 968621 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Prediction of HSV color model parameter values of
cloud movement picture based on artificial neural
networks
Autori
Radovan, Aleksander ; Ban, Željko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), stručni
Izvornik
Zbornik radova 41. međunarodnog skupa za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku
/ - , 2018, 1110-1114
Skup
41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018)
Mjesto i datum
Opatija, Hrvatska, 21.05.2018. - 25.05.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
prediction of image parameters, HSV color model, neural networks, Java, Encog
Sažetak
In order to predict the exact moment of Sun shading by clouds and Sun cover duration to optimize the energy flow in the microgrid with solar photo electric system, it is essential to transform cloud images from RGB color model into HSV color model to be able to precisely detect cloud edges and determine the position of centroids for prediction of cloud movements. Parameters that define the quality of the image depend on the range of values for Hue, Saturation and Value (HSV) components. The dynamics of clouds and changing their shapes, sizes and colors require constant adjustments of those parameters by a human to get the best results. This paper deals with prediction and automatic setting of the HSV parameters by using artificial neural network and supervised learning. The image processing and parameters prediction was performed by an application developed in Java programming language based on JavaCV library and Encog framework for implementation of the artificial neural network.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus