Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 967370

High-order exponentially fitted difference schemes for singularly perturbed two-point boundary value problems


Marušić, Miljenko
High-order exponentially fitted difference schemes for singularly perturbed two-point boundary value problems // Electronic transactions on numerical analysis, 48 (2018), 329-347 doi:10.1553/etna_vol48s329 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 967370 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
High-order exponentially fitted difference schemes for singularly perturbed two-point boundary value problems

Autori
Marušić, Miljenko

Izvornik
Electronic transactions on numerical analysis (1068-9613) 48 (2018); 329-347

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
difference scheme, singular perturbation, ODE, interpolation, exponential sum

Sažetak
We introduce a family of exponentially fitted difference schemes of arbitrary order as numerical approximations to the solution of a singularly perturbed two-point boundary value problem: $\varepsilon y'' + b y' + c y = f$. The difference schemes are derived from the interpolation formulae for exponential sum. So defined $k$-point differentiation formulae are exact on the functions that are linear combination of $1, x, \ldots, x^{; ; ; k- 2}; ; ; , \exp{; ; ; (-\rho x)}; ; ; $. Parameter $\rho$ is chosen from the asymptotic behavior of the solution in the boundary layer. This approach makes possible a construction of the method of arbitrary order of consistency. Using an estimate for interpolation error, we prove consistency of all the schemes from the family. Truncation error is bounded by $C h^{; ; ; k-2}; ; ; $ where $C$ is a constant independent on $\varepsilon$ and $h$. Therefore, order of consistency for $k$ point scheme is $k-2$ ($k \geq 3$) in the case of small perturbation parameter $\varepsilon$. There is no general proof for stability of proposed schemes. Each scheme has to be considered separately. In the paper, stability, and therefore convergence, is proved for three-point schemes in the case when $c<0$ and $b \neq 0$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
MZOS-037-0982913-2762 - Deterministički i probabilistički modeli u biologiji (Marušić, Miljenko, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Miljenko Marušić (autor)

Poveznice na cjeloviti tekst rada:

doi etna.mcs.kent.edu etna.mcs.kent.edu

Citiraj ovu publikaciju:

Marušić, Miljenko
High-order exponentially fitted difference schemes for singularly perturbed two-point boundary value problems // Electronic transactions on numerical analysis, 48 (2018), 329-347 doi:10.1553/etna_vol48s329 (međunarodna recenzija, članak, znanstveni)
Marušić, M. (2018) High-order exponentially fitted difference schemes for singularly perturbed two-point boundary value problems. Electronic transactions on numerical analysis, 48, 329-347 doi:10.1553/etna_vol48s329.
@article{article, author = {Maru\v{s}i\'{c}, Miljenko}, year = {2018}, pages = {329-347}, DOI = {10.1553/etna\_vol48s329}, keywords = {difference scheme, singular perturbation, ODE, interpolation, exponential sum}, journal = {Electronic transactions on numerical analysis}, doi = {10.1553/etna\_vol48s329}, volume = {48}, issn = {1068-9613}, title = {High-order exponentially fitted difference schemes for singularly perturbed two-point boundary value problems}, keyword = {difference scheme, singular perturbation, ODE, interpolation, exponential sum} }
@article{article, author = {Maru\v{s}i\'{c}, Miljenko}, year = {2018}, pages = {329-347}, DOI = {10.1553/etna\_vol48s329}, keywords = {difference scheme, singular perturbation, ODE, interpolation, exponential sum}, journal = {Electronic transactions on numerical analysis}, doi = {10.1553/etna\_vol48s329}, volume = {48}, issn = {1068-9613}, title = {High-order exponentially fitted difference schemes for singularly perturbed two-point boundary value problems}, keyword = {difference scheme, singular perturbation, ODE, interpolation, exponential sum} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font