Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 966321

Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling method


Soares, M. M. Pedro; Maraun, Douglas; Brands, Swen; Jury, Martin Wolfgang; Gutiérrez, J. Manuel; San Martin, Daniel; Hertig, Elke; Huth, Radan; Belušić Vozila, Andreina; Cardoso, M. Rita et al.
Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling method // International journal of climatology, 39 (2019), 9; 3868-3893 doi:10.1002/joc.5911 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 966321 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling method

Autori
Soares, M. M. Pedro ; Maraun, Douglas ; Brands, Swen ; Jury, Martin Wolfgang ; Gutiérrez, J. Manuel ; San Martin, Daniel ; Hertig, Elke ; Huth, Radan ; Belušić Vozila, Andreina ; Cardoso, M. Rita ; Kotlarski, Sven ; Drobinski, Philippe ; Obermann-Hellhund, Anika

Izvornik
International journal of climatology (0899-8418) 39 (2019), 9; 3868-3893

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Downscaling ; Model output statistics ; Perfect prognosis ; Bias adjustment ; Regime-oriented ; Climate change

Sažetak
Statistical downscaling methods (SDMs) are techniques used to downscale and/or bias correct climate model results to regional or local scales. The European network VALUE developed a framework to evaluate and intercompare SDMs. One of VALUE’s experiments is the perfect predictor experiment that uses reanalysis predictors to isolate downscaling skill. Most evaluation papers for SDMs employ simple statistical diagnostics and do not follow a process-based rationale. Thus, in this paper, a process-based evaluation has been conducted for the more than 40 participating model output statistics (MOS, mostly bias correction) and perfect prognosis (PP) methods, for temperature and precipitation at 86 weather stations across Europe. The SDMs are analysed following the so-called “regime- oriented” technique, focussing on relevant features of the atmospheric circulation at large to local scales. These features comprise the North Atlantic Oscillation, blocking and selected Lamb weather types and at local scales the bora wind and the western Iberian coastal-low level jet. The representation of the local weather response to the selected features depends strongly on the method class. As expected, MOS is unable to generate process sensitivity when it is not simulated by the predictors (ERA- Interim). Moreover, MOS often suffers from an inflation effect when a predictor is used for more than one station. The PP performance is very diverse and depends strongly on the implementation. Although conditioned on predictors that typically describe the large- scale circulation, PP often fails in capturing the process sensitivity correctly. Stochastic generalized linear models supported by well- chosen predictors show improved skill to represent the sensitivities.

Izvorni jezik
Engleski

Znanstvena područja
Geofizika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Andreina Belušić Vozila (autor)

Citiraj ovu publikaciju:

Soares, M. M. Pedro; Maraun, Douglas; Brands, Swen; Jury, Martin Wolfgang; Gutiérrez, J. Manuel; San Martin, Daniel; Hertig, Elke; Huth, Radan; Belušić Vozila, Andreina; Cardoso, M. Rita et al.
Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling method // International journal of climatology, 39 (2019), 9; 3868-3893 doi:10.1002/joc.5911 (međunarodna recenzija, članak, znanstveni)
Soares, M., Maraun, D., Brands, S., Jury, M., Gutiérrez, J., San Martin, D., Hertig, E., Huth, R., Belušić Vozila, A. & Cardoso, M. (2019) Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling method. International journal of climatology, 39 (9), 3868-3893 doi:10.1002/joc.5911.
@article{article, author = {Soares, M. M. Pedro and Maraun, Douglas and Brands, Swen and Jury, Martin Wolfgang and Guti\'{e}rrez, J. Manuel and San Martin, Daniel and Hertig, Elke and Huth, Radan and Belu\v{s}i\'{c} Vozila, Andreina and Cardoso, M. Rita and Kotlarski, Sven and Drobinski, Philippe and Obermann-Hellhund, Anika}, year = {2019}, pages = {3868-3893}, DOI = {10.1002/joc.5911}, keywords = {Downscaling, Model output statistics, Perfect prognosis, Bias adjustment, Regime-oriented, Climate change}, journal = {International journal of climatology}, doi = {10.1002/joc.5911}, volume = {39}, number = {9}, issn = {0899-8418}, title = {Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling method}, keyword = {Downscaling, Model output statistics, Perfect prognosis, Bias adjustment, Regime-oriented, Climate change} }
@article{article, author = {Soares, M. M. Pedro and Maraun, Douglas and Brands, Swen and Jury, Martin Wolfgang and Guti\'{e}rrez, J. Manuel and San Martin, Daniel and Hertig, Elke and Huth, Radan and Belu\v{s}i\'{c} Vozila, Andreina and Cardoso, M. Rita and Kotlarski, Sven and Drobinski, Philippe and Obermann-Hellhund, Anika}, year = {2019}, pages = {3868-3893}, DOI = {10.1002/joc.5911}, keywords = {Downscaling, Model output statistics, Perfect prognosis, Bias adjustment, Regime-oriented, Climate change}, journal = {International journal of climatology}, doi = {10.1002/joc.5911}, volume = {39}, number = {9}, issn = {0899-8418}, title = {Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling method}, keyword = {Downscaling, Model output statistics, Perfect prognosis, Bias adjustment, Regime-oriented, Climate change} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font