Pregled bibliografske jedinice broj: 964411
Gamma-convergence for one-dimensional Ginzburg- Landau functional with generalized Lipschitz penalizing term
Gamma-convergence for one-dimensional Ginzburg- Landau functional with generalized Lipschitz penalizing term // Proceedings in Applied Mathematics and Mechanics
Karlsruhe, Njemačka: Wiley-VCH, 2010. str. 523-524 doi:10.1002/pamm.201010254 (predavanje, međunarodna recenzija, kratko priopćenje, znanstveni)
CROSBI ID: 964411 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Gamma-convergence for one-dimensional Ginzburg- Landau functional with generalized Lipschitz penalizing term
Autori
Raguž, Andrija
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni
Izvornik
Proceedings in Applied Mathematics and Mechanics
/ - : Wiley-VCH, 2010, 523-524
Skup
GAMM annual meeting
Mjesto i datum
Karlsruhe, Njemačka, 22.03.2010. - 26.03.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Gamma-convergence, Young measures, relaxation
Sažetak
We use the approach developed in the paper G. Alberti, S. Muller: A new approach to variational problems with multiple scales, Comm. Pure Appl. Math. 54, 761-825 (2001) to obtain -convergence for a class of Ginzburg- Landau functionals I"(v), where v = v(s) is appropriate Sobolev function. We generalize results from the paper A. Raguž: Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micropatterns, Asymptotic Anal. 41(3, 4), 331-361 (2005), where original functional was penalized by 1- Lipschitz function g = g(s). In this note we prove - convergence when g = g(s ; v(s) ; v0(s)) under suitable growth conditions imposed on g.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Zagrebačka škola ekonomije i managementa, Zagreb
Profili:
Andrija Raguž
(autor)