Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 964405

On stability of asymptotic energy for a functional of the Ginzburg-Landau type with epsilon-dependent weakly-star convergent 1- Lipschitz penalizing term


Raguž, Andrija
On stability of asymptotic energy for a functional of the Ginzburg-Landau type with epsilon-dependent weakly-star convergent 1- Lipschitz penalizing term // Proceedings in Applied Mathematics and Mechanics
Gdańsk, Poljska: Wiley-VCH, 2009. str. 535-536 doi:10.1002/pamm.200910240 (predavanje, međunarodna recenzija, kratko priopćenje, znanstveni)


CROSBI ID: 964405 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On stability of asymptotic energy for a functional of the Ginzburg-Landau type with epsilon-dependent weakly-star convergent 1- Lipschitz penalizing term

Autori
Raguž, Andrija

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni

Izvornik
Proceedings in Applied Mathematics and Mechanics / - : Wiley-VCH, 2009, 535-536

Skup
GAMM annual meeting

Mjesto i datum
Gdańsk, Poljska, 09.02.2009. - 13.02.2009

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Singular perturbation, Ginzburg-Landau functional

Sažetak
We apply the approach developed in the paper G. Alberti, S. Müller: A new approach to variational problems with multiple scales, Comm. Pure Appl. Math. 54, 761-825 (2001) to calculate rescaled asymptotic energy associated to certain Ginzburg- Landau functional in one dimension. We generalize results from the paper A. Raguž: Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micropatterns, Asymptotic Anal. 41(3, 4), 331- 361 (2005), where original functional was penalized by 1-Lipschitz function g. In this note we consider the case when such penalizing functions depend on small parameter ε as their derivatives oscillate with period equal to ε to the power of γ for someγ > 0. We show that there are three distinctive cases of γ which lead to different asymptotic energy.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Zagrebačka škola ekonomije i managementa, Zagreb

Profili:

Avatar Url Andrija Raguž (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi

Citiraj ovu publikaciju:

Raguž, Andrija
On stability of asymptotic energy for a functional of the Ginzburg-Landau type with epsilon-dependent weakly-star convergent 1- Lipschitz penalizing term // Proceedings in Applied Mathematics and Mechanics
Gdańsk, Poljska: Wiley-VCH, 2009. str. 535-536 doi:10.1002/pamm.200910240 (predavanje, međunarodna recenzija, kratko priopćenje, znanstveni)
Raguž, A. (2009) On stability of asymptotic energy for a functional of the Ginzburg-Landau type with epsilon-dependent weakly-star convergent 1- Lipschitz penalizing term. U: Proceedings in Applied Mathematics and Mechanics doi:10.1002/pamm.200910240.
@article{article, author = {Ragu\v{z}, Andrija}, year = {2009}, pages = {535-536}, DOI = {10.1002/pamm.200910240}, keywords = {Singular perturbation, Ginzburg-Landau functional}, doi = {10.1002/pamm.200910240}, title = {On stability of asymptotic energy for a functional of the Ginzburg-Landau type with epsilon-dependent weakly-star convergent 1- Lipschitz penalizing term}, keyword = {Singular perturbation, Ginzburg-Landau functional}, publisher = {Wiley-VCH}, publisherplace = {Gda\'{n}sk, Poljska} }
@article{article, author = {Ragu\v{z}, Andrija}, year = {2009}, pages = {535-536}, DOI = {10.1002/pamm.200910240}, keywords = {Singular perturbation, Ginzburg-Landau functional}, doi = {10.1002/pamm.200910240}, title = {On stability of asymptotic energy for a functional of the Ginzburg-Landau type with epsilon-dependent weakly-star convergent 1- Lipschitz penalizing term}, keyword = {Singular perturbation, Ginzburg-Landau functional}, publisher = {Wiley-VCH}, publisherplace = {Gda\'{n}sk, Poljska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font