Pregled bibliografske jedinice broj: 964314
Relaxation of Ginzburg-Landau functional perturbed by nonlinear lower-order term in one dimension
Relaxation of Ginzburg-Landau functional perturbed by nonlinear lower-order term in one dimension // Analysis and Applications, 13 (2015), 01; 101-123 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 964314 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Relaxation of Ginzburg-Landau functional perturbed by nonlinear lower-order term in one dimension
Autori
Raguž, Andrija
Izvornik
Analysis and Applications (0219-5305) 13
(2015), 01;
101-123
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Asymptotic analysis ; Young measures ; Ginzburg–Landau functional ; gamma convergence
Sažetak
We study the asymptotic behavior as ε → 0 of the Ginzburg–Landau functional , where A(s, v, v′) is the nonlinear lower-order term generated by certain Carathéodory function a : (0, 1)2 × R2 → R. We obtain Γ-convergence for the rescaled functionals as ε → 0 by using the notion of Young measures on micropatterns, which was introduced in 2001 by Alberti and Müller. We prove that for ε ≈ 0 the minimal value of is close to , where A∞(s) : = ½A(s, 0, -1) + ½A(s, 0, 1) and where E0 depends only on W. Further, we use this example to establish some general conclusions related to the approach of Alberti and Müller.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Zagrebačka škola ekonomije i managementa, Zagreb
Profili:
Andrija Raguž
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus