Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 963275

Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082


Krolo, Jure; Lela, Branimir; Švagelj, Zrinka; Jozić, Sonja
Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082 // International journal of advanced manufacturing technology, 100 (2019), 9/12; 2981-2993 doi:10.1007/s00170-018-2893-x (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 963275 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082

Autori
Krolo, Jure ; Lela, Branimir ; Švagelj, Zrinka ; Jozić, Sonja

Izvornik
International journal of advanced manufacturing technology (0268-3768) 100 (2019), 9/12; 2981-2993

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Solid-state recycling ; Aluminum ; Electrical conductivity ; Microhardness ; Regression analysis

Sažetak
In the last few years, there is a demand for developing new technologies in order to increase scrap reuse potential and CO2 emission savings. In this paper, aluminum was recycled from chips obtained by machining without any remelting in order to reduce environmental pollution and to increase material yield during the process. This process is called solid-state recycling (SSR) or direct recycling. SSR process consists of chips cleaning, cold pre- compaction, and hot direct extrusion followed by equal channel angular pressing (ECAP) at different temperatures. Influence of direct extrusion temperature, ECAP temperature, and number of ECAP passes on electrical conductivity and microhardness of the recycled EN AW 6082 aluminum chips was investigated. Microhardness and electrical conductivity of the recycled samples were comparable with commercially produced EN AW 6082. Experiments were planned utilizing design of experiments approach. Both adaptive neuro-fuzzy interference system (ANFIS) and regression models were developed and compared to describe the influence of input SSR process parameters on electrical conductivity and microhardness. Density and metallographic analysis of the recycled samples were also performed.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Jure Krolo (autor)

Avatar Url Sonja Jozić (autor)

Avatar Url Zrinka Švagelj (autor)

Avatar Url Branimir Lela (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com doi.org

Citiraj ovu publikaciju:

Krolo, Jure; Lela, Branimir; Švagelj, Zrinka; Jozić, Sonja
Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082 // International journal of advanced manufacturing technology, 100 (2019), 9/12; 2981-2993 doi:10.1007/s00170-018-2893-x (međunarodna recenzija, članak, znanstveni)
Krolo, J., Lela, B., Švagelj, Z. & Jozić, S. (2019) Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082. International journal of advanced manufacturing technology, 100 (9/12), 2981-2993 doi:10.1007/s00170-018-2893-x.
@article{article, author = {Krolo, Jure and Lela, Branimir and \v{S}vagelj, Zrinka and Jozi\'{c}, Sonja}, year = {2019}, pages = {2981-2993}, DOI = {10.1007/s00170-018-2893-x}, keywords = {Solid-state recycling, Aluminum, Electrical conductivity, Microhardness, Regression analysis}, journal = {International journal of advanced manufacturing technology}, doi = {10.1007/s00170-018-2893-x}, volume = {100}, number = {9/12}, issn = {0268-3768}, title = {Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082}, keyword = {Solid-state recycling, Aluminum, Electrical conductivity, Microhardness, Regression analysis} }
@article{article, author = {Krolo, Jure and Lela, Branimir and \v{S}vagelj, Zrinka and Jozi\'{c}, Sonja}, year = {2019}, pages = {2981-2993}, DOI = {10.1007/s00170-018-2893-x}, keywords = {Solid-state recycling, Aluminum, Electrical conductivity, Microhardness, Regression analysis}, journal = {International journal of advanced manufacturing technology}, doi = {10.1007/s00170-018-2893-x}, volume = {100}, number = {9/12}, issn = {0268-3768}, title = {Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082}, keyword = {Solid-state recycling, Aluminum, Electrical conductivity, Microhardness, Regression analysis} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Compendex (EI Village)
  • INSPEC
  • EBSCO
  • Google Scholar
  • JCR/Science Edition
  • Gale
  • Gale Academic OneFile
  • Gale InfoTrac
  • OCLC WorldCat Discovery Service
  • ProQuest


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font