Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 962686

Reinforcement learning for control : Performance, stability, and deep approximators


Buşoniu, Lucian; de Bruin, Tim; Tolić, Domagoj; Kober, Jens; Palunko, Ivana
Reinforcement learning for control : Performance, stability, and deep approximators // Annual reviews in control, 46 (2018), 8-28 doi:10.1016/j.arcontrol.2018.09.005 (međunarodna recenzija, pregledni rad, znanstveni)


CROSBI ID: 962686 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Reinforcement learning for control : Performance, stability, and deep approximators

Autori
Buşoniu, Lucian ; de Bruin, Tim ; Tolić, Domagoj ; Kober, Jens ; Palunko, Ivana

Izvornik
Annual reviews in control (1367-5788) 46 (2018); 8-28

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni

Ključne riječi
Reinforcement learning ; Optimal control ; Deep learning ; Stability ; Function approximation ; Adaptive dynamic programming

Sažetak
Reinforcement learning (RL) offers powerful algorithms to search for optimal controllers of systems with nonlinear, possibly stochastic dynamics that are unknown or highly uncertain. This review mainly cov- ers artificial-intelligence approaches to RL, from the viewpoint of the control engineer. We explain how approximate representations of the solution make RL feasible for problems with continuous states and control actions. Stability is a central concern in control, and we argue that while the control-theoretic RL subfield called adaptive dynamic programming is dedicated to it, stability of RL largely remains an open question. We also cover in detail the case where deep neural networks are used for approxima- tion, leading to the field of deep RL, which has shown great success in recent years. With the control practitioner in mind, we outline opportunities and pitfalls of deep RL ; and we close the survey with an outlook that –among other things –points out some avenues for bridging the gap between control and artificial-intelligence RL techniques.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-2468 - Upravljanje dinamičkim sustavima (ConDyS) (Lazar, Martin, HRZZ ) ( CroRIS)

Ustanove:
Sveučilište u Dubrovniku,
RIT Croatia, Dubrovnik

Profili:

Avatar Url Ivana Palunko (autor)

Avatar Url Domagoj Tolić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Buşoniu, Lucian; de Bruin, Tim; Tolić, Domagoj; Kober, Jens; Palunko, Ivana
Reinforcement learning for control : Performance, stability, and deep approximators // Annual reviews in control, 46 (2018), 8-28 doi:10.1016/j.arcontrol.2018.09.005 (međunarodna recenzija, pregledni rad, znanstveni)
Buşoniu, L., de Bruin, T., Tolić, D., Kober, J. & Palunko, I. (2018) Reinforcement learning for control : Performance, stability, and deep approximators. Annual reviews in control, 46, 8-28 doi:10.1016/j.arcontrol.2018.09.005.
@article{article, author = {Bu\c{s}oniu, Lucian and de Bruin, Tim and Toli\'{c}, Domagoj and Kober, Jens and Palunko, Ivana}, year = {2018}, pages = {8-28}, DOI = {10.1016/j.arcontrol.2018.09.005}, keywords = {Reinforcement learning, Optimal control, Deep learning, Stability, Function approximation, Adaptive dynamic programming}, journal = {Annual reviews in control}, doi = {10.1016/j.arcontrol.2018.09.005}, volume = {46}, issn = {1367-5788}, title = {Reinforcement learning for control : Performance, stability, and deep approximators}, keyword = {Reinforcement learning, Optimal control, Deep learning, Stability, Function approximation, Adaptive dynamic programming} }
@article{article, author = {Bu\c{s}oniu, Lucian and de Bruin, Tim and Toli\'{c}, Domagoj and Kober, Jens and Palunko, Ivana}, year = {2018}, pages = {8-28}, DOI = {10.1016/j.arcontrol.2018.09.005}, keywords = {Reinforcement learning, Optimal control, Deep learning, Stability, Function approximation, Adaptive dynamic programming}, journal = {Annual reviews in control}, doi = {10.1016/j.arcontrol.2018.09.005}, volume = {46}, issn = {1367-5788}, title = {Reinforcement learning for control : Performance, stability, and deep approximators}, keyword = {Reinforcement learning, Optimal control, Deep learning, Stability, Function approximation, Adaptive dynamic programming} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Compendex (EI Village)
  • GeoRef
  • INSPEC
  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts
  • EBSCOhost
  • Emerald Computer Abstracts
  • Engineering Index Monthly
  • Gale Academic OneFile
  • Gale Infotrac Custom
  • PubMed


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font