Pregled bibliografske jedinice broj: 962686
Reinforcement learning for control : Performance, stability, and deep approximators
Reinforcement learning for control : Performance, stability, and deep approximators // Annual reviews in control, 46 (2018), 8-28 doi:10.1016/j.arcontrol.2018.09.005 (međunarodna recenzija, pregledni rad, znanstveni)
CROSBI ID: 962686 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Reinforcement learning for control : Performance, stability, and deep approximators
Autori
Buşoniu, Lucian ; de Bruin, Tim ; Tolić, Domagoj ; Kober, Jens ; Palunko, Ivana
Izvornik
Annual reviews in control (1367-5788) 46
(2018);
8-28
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni
Ključne riječi
Reinforcement learning ; Optimal control ; Deep learning ; Stability ; Function approximation ; Adaptive dynamic programming
Sažetak
Reinforcement learning (RL) offers powerful algorithms to search for optimal controllers of systems with nonlinear, possibly stochastic dynamics that are unknown or highly uncertain. This review mainly cov- ers artificial-intelligence approaches to RL, from the viewpoint of the control engineer. We explain how approximate representations of the solution make RL feasible for problems with continuous states and control actions. Stability is a central concern in control, and we argue that while the control-theoretic RL subfield called adaptive dynamic programming is dedicated to it, stability of RL largely remains an open question. We also cover in detail the case where deep neural networks are used for approxima- tion, leading to the field of deep RL, which has shown great success in recent years. With the control practitioner in mind, we outline opportunities and pitfalls of deep RL ; and we close the survey with an outlook that –among other things –points out some avenues for bridging the gap between control and artificial-intelligence RL techniques.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-2468 - Upravljanje dinamičkim sustavima (ConDyS) (Lazar, Martin, HRZZ ) ( CroRIS)
Ustanove:
Sveučilište u Dubrovniku,
RIT Croatia, Dubrovnik
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Compendex (EI Village)
- GeoRef
- INSPEC
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts
- EBSCOhost
- Emerald Computer Abstracts
- Engineering Index Monthly
- Gale Academic OneFile
- Gale Infotrac Custom
- PubMed