Pregled bibliografske jedinice broj: 962664
A First-Order Approximation to Scalar Scattering From Thin, Curved Dielectric Objects
A First-Order Approximation to Scalar Scattering From Thin, Curved Dielectric Objects // International Conference on Generalised Functions
Dubrovnik, Hrvatska, 2016. str. 16-16 (predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)
CROSBI ID: 962664 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A First-Order Approximation to Scalar Scattering From Thin, Curved Dielectric Objects
Autori
Bojanjac, Dario ; Šipuš, Zvonimir ; Grbic, Anthony
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
International Conference on Generalised Functions
/ - , 2016, 16-16
Skup
International Conference on Generalised Functions
Mjesto i datum
Dubrovnik, Hrvatska, 04.09.2016. - 09.09.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Podatak o recenziji nije dostupan
Ključne riječi
reduction of dimension, electromagnetic scattering, Maxwell's equations
Sažetak
A first-order asymptotic approximation to scalar scattering from a curved thin dielectric object Sd is presented. In order to solve the scattering problem, a Lippmann- Schwinger integral equation is derived from the governing Helmholtz partial differential equation. A space distribution of relative permittivity er within the integral equation describes the scattering object. Using asymptotic analysis, the initial integral equation over the thin, curved three dimensional object is transformed into an integral equation over a two dimensional object, which approximately describes the thin, curved object. With the described transformation, computational time is significantly reduced since the dimensions of the scattering object are reduced by one. Presented work is an extension of analysis described in paper by D. Ambrose and S. Moskow.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb