Pregled bibliografske jedinice broj: 960594
Topological entropy on closed sets in [0,1]2
Topological entropy on closed sets in [0,1]2 // Topology and its applications, 246 (2018), 106-136 doi:10.1016/j.topol.2018.06.015 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 960594 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Topological entropy on closed sets in [0,1]2
Autori
Erceg, Goran ; Kennedy, Judy
Izvornik
Topology and its applications (0166-8641) 246
(2018);
106-136
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Generalized inverse limit ; Topological entropy ; Invariant Cantor set ; Subshift of finite type ; Mahavier product
Sažetak
We generalize the definition of topological entropy due to Adler, Konheim, and McAndrew [1] to set-valued functions from a closed subset A of the interval to closed subsets of the interval. We view these set-valued functions, via their graphs, as closed subsets of [0, 1]^2. We show that many of the topological entropy properties of continuous functions of a compact topological space to itself hold in our new setting, but not all. We also compute the topological entropy of some examples, relate the entropy to other dynamical and topological properties of the examples, and we give an example of a closed subset G of [0, 1]^2 that has 0 entropy but G U {; ; ; ; (p, q)}; ; ; ; , where (p, q) is an element of [0, 1]^2 \ G, has infinite entropy.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus