Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 960594

Topological entropy on closed sets in [0,1]2


Erceg, Goran; Kennedy, Judy
Topological entropy on closed sets in [0,1]2 // Topology and its applications, 246 (2018), 106-136 doi:10.1016/j.topol.2018.06.015 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 960594 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Topological entropy on closed sets in [0,1]2

Autori
Erceg, Goran ; Kennedy, Judy

Izvornik
Topology and its applications (0166-8641) 246 (2018); 106-136

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Generalized inverse limit ; Topological entropy ; Invariant Cantor set ; Subshift of finite type ; Mahavier product

Sažetak
We generalize the definition of topological entropy due to Adler, Konheim, and McAndrew [1] to set-valued functions from a closed subset A of the interval to closed subsets of the interval. We view these set-valued functions, via their graphs, as closed subsets of [0, 1]^2. We show that many of the topological entropy properties of continuous functions of a compact topological space to itself hold in our new setting, but not all. We also compute the topological entropy of some examples, relate the entropy to other dynamical and topological properties of the examples, and we give an example of a closed subset G of [0, 1]^2 that has 0 entropy but G U {; ; ; ; (p, q)}; ; ; ; , where (p, q) is an element of [0, 1]^2 \ G, has infinite entropy.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Goran Erceg (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Erceg, Goran; Kennedy, Judy
Topological entropy on closed sets in [0,1]2 // Topology and its applications, 246 (2018), 106-136 doi:10.1016/j.topol.2018.06.015 (međunarodna recenzija, članak, znanstveni)
Erceg, G. & Kennedy, J. (2018) Topological entropy on closed sets in [0,1]2. Topology and its applications, 246, 106-136 doi:10.1016/j.topol.2018.06.015.
@article{article, author = {Erceg, Goran and Kennedy, Judy}, year = {2018}, pages = {106-136}, DOI = {10.1016/j.topol.2018.06.015}, keywords = {Generalized inverse limit, Topological entropy, Invariant Cantor set, Subshift of finite type, Mahavier product}, journal = {Topology and its applications}, doi = {10.1016/j.topol.2018.06.015}, volume = {246}, issn = {0166-8641}, title = {Topological entropy on closed sets in [0,1]2}, keyword = {Generalized inverse limit, Topological entropy, Invariant Cantor set, Subshift of finite type, Mahavier product} }
@article{article, author = {Erceg, Goran and Kennedy, Judy}, year = {2018}, pages = {106-136}, DOI = {10.1016/j.topol.2018.06.015}, keywords = {Generalized inverse limit, Topological entropy, Invariant Cantor set, Subshift of finite type, Mahavier product}, journal = {Topology and its applications}, doi = {10.1016/j.topol.2018.06.015}, volume = {246}, issn = {0166-8641}, title = {Topological entropy on closed sets in [0,1]2}, keyword = {Generalized inverse limit, Topological entropy, Invariant Cantor set, Subshift of finite type, Mahavier product} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font