Pregled bibliografske jedinice broj: 960435
Statistical Compressive Sensing For Efficient Signal Reconstruction and Classification
Statistical Compressive Sensing For Efficient Signal Reconstruction and Classification // Proceedings of 2018 4th International Conference on Frontiers of Signal Processing / Prof. Jacques Blanc-Talon (ur.).
Poitiers: Institute of Electrical and Electronics Engineers (IEEE), 2018. str. 44-49 doi:10.1109/ICFSP.2018.8552059 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 960435 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Statistical Compressive Sensing For Efficient Signal Reconstruction and Classification
Autori
Ralašić, Ivan ; Tafro, Azra ; Seršić, Damir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 2018 4th International Conference on Frontiers of Signal Processing
/ Prof. Jacques Blanc-Talon - Poitiers : Institute of Electrical and Electronics Engineers (IEEE), 2018, 44-49
ISBN
978-1-5386-7852-7
Skup
4th International Conference on Frontiers of Signal Processing (ICFSP)
Mjesto i datum
Poitiers, Francuska, 24.09.2018. - 27.09.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
classification, compressive sensing, dimensional- ity reduction, Gaussian mixture models, inverse problems, signal reconstruction
Sažetak
Compressive sensing (CS) represents a signal pro- cessing technique for simultaneous signal acquisition and compression that relies on signal dimensionality reduction. Statistical compressive sensing (SCS) uses statistical models to develop an efficient sampling strategy for signals that follow some statistical distribution. In this paper, statistical model based on Gaussian mixtures is employed to design an efficient framework for the CS signal reconstruction and classification. A robust classification method based on sparse signal representation using overcomplete eigenvector dictionaries and l 1 - norm is presented. Optimal non-adaptive measurement matrix for observed Gaussian mixture model is discussed. A series of experiments to analyze the performance of the proposed method has been performed and presented in the experimental results section.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-2625 - Iznad Nyquistove granice (BeyondLimit) (Seršić, Damir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb