Pregled bibliografske jedinice broj: 959670
Stochastic Thermal Dosimetry for the Three Compartment Head Model
Stochastic Thermal Dosimetry for the Three Compartment Head Model // 2018 International Conference on Software, Telecommunications and Computer Networks / Begušić, Dinko ; Rožić, Nikola ; Radić, Joško ; Šarić, Matko (ur.).
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2018. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 959670 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Stochastic Thermal Dosimetry for the Three Compartment Head Model
Autori
Šušnjara, Anna ; Cvetković, Mario ; Dodig, Hrvoje ; Poljak, Dragan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2018 International Conference on Software, Telecommunications and Computer Networks
/ Begušić, Dinko ; Rožić, Nikola ; Radić, Joško ; Šarić, Matko - Split : Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2018, 1-6
Skup
26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2018)
Mjesto i datum
Split, Hrvatska; Supetar, Hrvatska, 13.09.2018. - 15.09.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
human head model ; hybrid method ; sensitivity analysis ; sparse grid interpolation ; stochastic collocation ; thermal dosimetry ;
Sažetak
This paper presents a stochastic approach to the assessment of the temperature elevation in human head tissues due to the exposure to high frequency electromagnetic field. The novelty in this work is based on the coupling of the heterogeneous human head model with the stochastic method. Namely, the thermal parameters of three head tissues are modeled as random variables in order to capture the influence of the input uncertainty on the temperature elevation. The volumetric perfusion blood rate and tissue thermal conductivity of scalp, skull and brain are modeled as random variables with uniform distributions. The chosen thermal parameters are selected according to the findings in the previous work of the authors for a simpler homogeneous human brain model. The chosen parameters are shown to be the most influential ones regarding the temperature elevation. The propagation of uncertainties from the input random parameters to the output of interest, i.e. temperature elevation is carried out by using the non-intrusive Lagrange stochastic collocation method. A sparse grid interpolation in the multidimensional random space is used which speeds up the calculation compared to traditional Monte Carlo sampling methods or full tensor stochastic collocation approach. The presented results provide an insight into the behavior of the model output with respect to parameter variations and allows the ranking of the input parameters from the most to the least influential ones.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Pomorski fakultet, Split