Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 958519

Interactive exploration of parameter space in data mining: Comprehending the predictive quality of large decision tree collections


Padua, Luciana; Schulze, Hendrik; Matković, Krešimir; Delrieux, Claudio
Interactive exploration of parameter space in data mining: Comprehending the predictive quality of large decision tree collections // Computers & Graphics, 41 (2014), 99-113 doi:10.1016/j.cag.2014.02.004 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 958519 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Interactive exploration of parameter space in data mining: Comprehending the predictive quality of large decision tree collections

Autori
Padua, Luciana ; Schulze, Hendrik ; Matković, Krešimir ; Delrieux, Claudio

Izvornik
Computers & Graphics (0097-8493) 41 (2014); 99-113

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Decision trees Parameter space exploration Visual analytics Knowledge discovery

Sažetak
Decision trees are an intuitive yet powerful tool for performing predictive data analysis in data mining. In order to generate an adequate predictive model from a data set, a data analyst has to assess the predictive quality of the decision trees derived from several combinations of working parameters. Except in very simple cases, this may be a tedious and error prone supervised task, since the parameter space is frequently huge. Analysts rely on their intuition and usually test just a few different parameter settings. In this work we present an interactive approach to facilitate the comprehension of the predictive power of large collections of decision trees by exploring large portions of the parameter space. For this, we developed novel views that allow us to visualize and analyze the predictive quality of hundreds of trees, working together with coordinated multiple views of tree representations (needed to understand the tree shapes and actual information herein), and aggregates of Receiver Operating Characteristic (ROC) and lift curves for assessing the predictive quality of the models. We developed a worked example using a data set from a Telecommunications company, showing how easy and natural it is to gain insight into the behavior of the data within our exploration tool, as compared with the traditional and widespread common practice of data analysts.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Profili:

Avatar Url Krešimir Matković (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Padua, Luciana; Schulze, Hendrik; Matković, Krešimir; Delrieux, Claudio
Interactive exploration of parameter space in data mining: Comprehending the predictive quality of large decision tree collections // Computers & Graphics, 41 (2014), 99-113 doi:10.1016/j.cag.2014.02.004 (međunarodna recenzija, članak, znanstveni)
Padua, L., Schulze, H., Matković, K. & Delrieux, C. (2014) Interactive exploration of parameter space in data mining: Comprehending the predictive quality of large decision tree collections. Computers & Graphics, 41, 99-113 doi:10.1016/j.cag.2014.02.004.
@article{article, author = {Padua, Luciana and Schulze, Hendrik and Matkovi\'{c}, Kre\v{s}imir and Delrieux, Claudio}, year = {2014}, pages = {99-113}, DOI = {10.1016/j.cag.2014.02.004}, keywords = {Decision trees Parameter space exploration Visual analytics Knowledge discovery}, journal = {Computers and Graphics}, doi = {10.1016/j.cag.2014.02.004}, volume = {41}, issn = {0097-8493}, title = {Interactive exploration of parameter space in data mining: Comprehending the predictive quality of large decision tree collections}, keyword = {Decision trees Parameter space exploration Visual analytics Knowledge discovery} }
@article{article, author = {Padua, Luciana and Schulze, Hendrik and Matkovi\'{c}, Kre\v{s}imir and Delrieux, Claudio}, year = {2014}, pages = {99-113}, DOI = {10.1016/j.cag.2014.02.004}, keywords = {Decision trees Parameter space exploration Visual analytics Knowledge discovery}, journal = {Computers and Graphics}, doi = {10.1016/j.cag.2014.02.004}, volume = {41}, issn = {0097-8493}, title = {Interactive exploration of parameter space in data mining: Comprehending the predictive quality of large decision tree collections}, keyword = {Decision trees Parameter space exploration Visual analytics Knowledge discovery} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font