Pregled bibliografske jedinice broj: 958493
Albero: A Visual Analytics Approach for Probabilistic Weather Forecasting
Albero: A Visual Analytics Approach for Probabilistic Weather Forecasting // Computer Graphics Forum, 36 (2017), 7; 135-144 doi:10.1111/cgf.13279 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 958493 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Albero: A Visual Analytics Approach for Probabilistic Weather Forecasting
Autori
Diehl, A. ; Pelorosso, L. ; Delrieux, C. ; Matković, K. ; Ruiz, J. ; Gröller, M.E. ; Bruckner, S.
Izvornik
Computer Graphics Forum (0167-7055) 36
(2017), 7;
135-144
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Visual Analytics, Interactive Visual Analysis
(Albero: A Visual Analytics Approach for Probabilistic Weather Forecasting)
Sažetak
Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision-making and process-quality measurements.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus