Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 958489

Application of Transfer Learning for Fine-Grained Vessel Classification Using a Limited Dataset


Miličević, Mario; Žubrinić, Krunoslav; Obradović, Ines; Sjekavica, Tomo
Application of Transfer Learning for Fine-Grained Vessel Classification Using a Limited Dataset // Proceedings of the 3rd International Conference on Applied Physics, System Science and Computers (APSAC2018)
Cham: Springer, 2018. str. 125-131 doi:10.1007/978-3-030-21507-1_19 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 958489 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Application of Transfer Learning for Fine-Grained Vessel Classification Using a Limited Dataset

Autori
Miličević, Mario ; Žubrinić, Krunoslav ; Obradović, Ines ; Sjekavica, Tomo

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 3rd International Conference on Applied Physics, System Science and Computers (APSAC2018) / - Cham : Springer, 2018, 125-131

ISBN
978-3-030-21507-1

Skup
3rd International Conference on Applied Physics, System Science and Computers (APSAC 2018)

Mjesto i datum
Dubrovnik, Hrvatska, 26.09.2018. - 28.09.2018

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
deep convolutional neural networks ; deep learning ; classification ; transfer learning ; parameter fine-tuning

Sažetak
The automatic classification of maritime vessel type from low resolution images is a significant challenge and continues to attract increasing interest because of its importance to maritime surveillance. Convolutional neural networks are the method of choice for supervised image classification, but they require a large number of annotated samples, which prevents many superior models being applied to problems with a limited number of training samples. One possible solution is transfer learning where pre-trained models are used on entirely new predictive modeling, transferring knowledge between related source and target domains. Our experimental results demonstrate that a combination of data augmentation and transfer learning leads to a better performance in the presence of small training dataset, even in the a fine-grained classification context.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Sveučilište u Dubrovniku

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi link.springer.com

Citiraj ovu publikaciju:

Miličević, Mario; Žubrinić, Krunoslav; Obradović, Ines; Sjekavica, Tomo
Application of Transfer Learning for Fine-Grained Vessel Classification Using a Limited Dataset // Proceedings of the 3rd International Conference on Applied Physics, System Science and Computers (APSAC2018)
Cham: Springer, 2018. str. 125-131 doi:10.1007/978-3-030-21507-1_19 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Miličević, M., Žubrinić, K., Obradović, I. & Sjekavica, T. (2018) Application of Transfer Learning for Fine-Grained Vessel Classification Using a Limited Dataset. U: Proceedings of the 3rd International Conference on Applied Physics, System Science and Computers (APSAC2018) doi:10.1007/978-3-030-21507-1_19.
@article{article, author = {Mili\v{c}evi\'{c}, Mario and \v{Z}ubrini\'{c}, Krunoslav and Obradovi\'{c}, Ines and Sjekavica, Tomo}, year = {2018}, pages = {125-131}, DOI = {10.1007/978-3-030-21507-1\_19}, keywords = {deep convolutional neural networks, deep learning, classification, transfer learning, parameter fine-tuning}, doi = {10.1007/978-3-030-21507-1\_19}, isbn = {978-3-030-21507-1}, title = {Application of Transfer Learning for Fine-Grained Vessel Classification Using a Limited Dataset}, keyword = {deep convolutional neural networks, deep learning, classification, transfer learning, parameter fine-tuning}, publisher = {Springer}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Mili\v{c}evi\'{c}, Mario and \v{Z}ubrini\'{c}, Krunoslav and Obradovi\'{c}, Ines and Sjekavica, Tomo}, year = {2018}, pages = {125-131}, DOI = {10.1007/978-3-030-21507-1\_19}, keywords = {deep convolutional neural networks, deep learning, classification, transfer learning, parameter fine-tuning}, doi = {10.1007/978-3-030-21507-1\_19}, isbn = {978-3-030-21507-1}, title = {Application of Transfer Learning for Fine-Grained Vessel Classification Using a Limited Dataset}, keyword = {deep convolutional neural networks, deep learning, classification, transfer learning, parameter fine-tuning}, publisher = {Springer}, publisherplace = {Dubrovnik, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font