Pregled bibliografske jedinice broj: 958336
Autonomous data acquisition in the hierarchical edge-based MCS ecosystem
Autonomous data acquisition in the hierarchical edge-based MCS ecosystem // Proceedings of the 6th International Conference on Future Internet of Things and Cloud Workshops 2018
Barcelona: Institute of Electrical and Electronics Engineers (IEEE), 2018. str. 34-41 doi:10.1109/W-FiCloud.2018.00012 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 958336 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Autonomous data acquisition in the hierarchical edge-based MCS ecosystem
Autori
Marjanović, Martina ; Antonić, Aleksandar ; Podnar Žarko, Ivana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 6th International Conference on Future Internet of Things and Cloud Workshops 2018
/ - Barcelona : Institute of Electrical and Electronics Engineers (IEEE), 2018, 34-41
ISBN
978-1-5386-7810-7
Skup
6th International Conference on Future Internet of Things and Cloud (FiCloud 2018)
Mjesto i datum
Barcelona, Španjolska, 06.08.2018. - 08.08.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
mobile crowdsensing, hierarchical edge-based architecture, autonomous data acquisition, Bloom filter
Sažetak
Mobile crowdsensing (MCS) is a human-driven sensing paradigm that empowers ordinary citizens to use their mobile devices and become active observers of the environment. Due to the large number of devices participating in MCS tasks, MCS services generate a huge amount of data which needs to be transmitted over the network, while the inherent mobility of users can quickly make information obsolete, and requires efficient data processing. Since the traditional cloud-based architecture may increase the data propagation latency and network traffic, novel solutions are needed to optimize the amount of data which is transmitted over the network. In our previous work we have shown that edge computing is a promising technology to decentralize MCS services and reduce the complexity of data processing by moving computation in the proximity of mobile users. In this paper, we introduce a novel approach to reduce the amount of redundant data in the hierarchical edge- based MCS ecosystem. In particular, we propose the usage of Bloom filter data structure on mobile devices and edge servers to enable users participating in MCS tasks to make autonomous informed decisions on whether to contribute data to the edge servers or not. %, without continuous management and coordination from the cloud. Bloom filter proves to be an efficient technique to obviate redundant sensor activity on collocated mobile devices, reduce the complexity of data processing and network traffic, while in the same time gives useful indication whether MCS data is valuable at a certain location and point in time. We evaluate Bloom filter with respect to filter size and probability of false positives, and analyze the number of lost data readings in relation to expected number of different elements. Our analysis shows that both filter size and error rate are sufficiently small to be used in MCS.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
UIP-2017-05-9066 - Učinkovita stvarnovremenska obrada brzih geoprostornih podataka (RETROFIT) (Pripužić, Krešimir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb