Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 958334

Convolutional Models for Segmentation and Localization


Krešo, Ivan; Bevandić, Petra; Oršić, Marin; Šegvić, Siniša
Convolutional Models for Segmentation and Localization // Engineering Power, 13 (2018), 2; 8-12 (podatak o recenziji nije dostupan, pregledni rad, stručni)


CROSBI ID: 958334 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Convolutional Models for Segmentation and Localization

Autori
Krešo, Ivan ; Bevandić, Petra ; Oršić, Marin ; Šegvić, Siniša

Izvornik
Engineering Power (1331-7210) 13 (2018), 2; 8-12

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, stručni

Ključne riječi
Convolutional models

Sažetak
The revival of deep models has profoundly improved the accuracy of image classification models and provided a large improvement potential in related computer vision tasks. Recently, much attention has been directed to­ wards dense prediction models which produce distinct output in each image pixel. This paper addresses two particular instances of dense prediction: object loca­lization and semantic segmentation. We briefly review the underlying operation principles, present some of our experimental results and discuss ways to analyze the success of learning and the utility of the resulting models.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Krešo (autor)

Avatar Url Marin Oršić (autor)

Avatar Url Petra Bevandić (autor)

Avatar Url Siniša Šegvić (autor)

Poveznice na cjeloviti tekst rada:

www.hatz.hr

Citiraj ovu publikaciju:

Krešo, Ivan; Bevandić, Petra; Oršić, Marin; Šegvić, Siniša
Convolutional Models for Segmentation and Localization // Engineering Power, 13 (2018), 2; 8-12 (podatak o recenziji nije dostupan, pregledni rad, stručni)
Krešo, I., Bevandić, P., Oršić, M. & Šegvić, S. (2018) Convolutional Models for Segmentation and Localization. Engineering Power, 13 (2), 8-12.
@article{article, author = {Kre\v{s}o, Ivan and Bevandi\'{c}, Petra and Or\v{s}i\'{c}, Marin and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2018}, pages = {8-12}, keywords = {Convolutional models}, journal = {Engineering Power}, volume = {13}, number = {2}, issn = {1331-7210}, title = {Convolutional Models for Segmentation and Localization}, keyword = {Convolutional models} }
@article{article, author = {Kre\v{s}o, Ivan and Bevandi\'{c}, Petra and Or\v{s}i\'{c}, Marin and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2018}, pages = {8-12}, keywords = {Convolutional models}, journal = {Engineering Power}, volume = {13}, number = {2}, issn = {1331-7210}, title = {Convolutional Models for Segmentation and Localization}, keyword = {Convolutional models} }




Contrast
Increase Font
Decrease Font
Dyslexic Font