Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 957979

Construction of self-orthogonal linear codes from orbit matrices of combinatorial structures


Rukavina, Sanja
Construction of self-orthogonal linear codes from orbit matrices of combinatorial structures // 8th PhD Summer School in Discrete Mathematics
Rogla, Slovenija, 2018. str. 8-8 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 957979 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Construction of self-orthogonal linear codes from orbit matrices of combinatorial structures

Autori
Rukavina, Sanja

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
8th PhD Summer School in Discrete Mathematics / - , 2018, 8-8

Skup
8th PhD Summer School in Discrete Mathematics

Mjesto i datum
Rogla, Slovenija, 01.07.2018. - 07.07.2018

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
self-orthogonal code ; orbit matrix ; combinatorial structure

Sažetak
The incidence structures can be presented by their incidence matrices. An automorphism group acting on the structure induces the tactical decomposition of the corresponding incidence matrix, from which one can construct the related orbit matrix. We will study codes spanned by the rows of an orbit matrix of a symmetric design with respect to an automorphism group that acts with all orbits of the same length. The dimension of such codes will be discussed. We define an extended orbit matrix and show that under certain conditions the rows of the extended orbit matrix span a code that is self-dual with respect to a certain scalar product. We will also study codes spanned by the rows of the quotient matrices of symmetric (group) divisible designs (SGDD) with the dual property. In a similar way as in the case of symmetric designs, we will discuss self-dual codes constructed from the extended quotient matrices of SGDDs. In adition, we will present a construction of self-orthogonal linear codes from orbit matrices of strongly regular graphs and show that under certain conditions submatrices of orbit matrices of strongly regular graphs span self-orthogonal codes.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-1637 - Kodovi i s njima povezane kombinatoričke strukture (CoCoS) (Crnković, Dean, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku

Profili:

Avatar Url Sanja Rukavina (autor)


Citiraj ovu publikaciju:

Rukavina, Sanja
Construction of self-orthogonal linear codes from orbit matrices of combinatorial structures // 8th PhD Summer School in Discrete Mathematics
Rogla, Slovenija, 2018. str. 8-8 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
Rukavina, S. (2018) Construction of self-orthogonal linear codes from orbit matrices of combinatorial structures. U: 8th PhD Summer School in Discrete Mathematics.
@article{article, author = {Rukavina, Sanja}, year = {2018}, pages = {8-8}, keywords = {self-orthogonal code, orbit matrix, combinatorial structure}, title = {Construction of self-orthogonal linear codes from orbit matrices of combinatorial structures}, keyword = {self-orthogonal code, orbit matrix, combinatorial structure}, publisherplace = {Rogla, Slovenija} }
@article{article, author = {Rukavina, Sanja}, year = {2018}, pages = {8-8}, keywords = {self-orthogonal code, orbit matrix, combinatorial structure}, title = {Construction of self-orthogonal linear codes from orbit matrices of combinatorial structures}, keyword = {self-orthogonal code, orbit matrix, combinatorial structure}, publisherplace = {Rogla, Slovenija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font