Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 955782

Structure Functions of Ruled Surfaces with Null Rulings


Primorac Gajčić, Ljiljana; Milin Šipuš, Željka; Protrka, Ivana
Structure Functions of Ruled Surfaces with Null Rulings // Proceedings of the 18th International Conference on Geometry and Graphics (ICGG 2018) / Cocchiarella, Luigi (ur.).
Milano: Springer, 2019. str. 371-380 doi:10.1007/978-3-319-95588-9 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 955782 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Structure Functions of Ruled Surfaces with Null Rulings

Autori
Primorac Gajčić, Ljiljana ; Milin Šipuš, Željka ; Protrka, Ivana

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 18th International Conference on Geometry and Graphics (ICGG 2018) / Cocchiarella, Luigi - Milano : Springer, 2019, 371-380

ISBN
978-3-319-95587-2

Skup
18th International Conference on Geometry and Graphics (ICGG 2018 )

Mjesto i datum
Milano, Italija, 03.07.2018. - 07.07.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Minkowski space, isometry, ruled surface, B-scroll

Sažetak
In this paper we analyse ruled surfaces in Lorentz-Minkowski space in terms of their structure functions. We are especially interested in ruled surfaces which do not have a Euclidean counterpart, that is, surfaces with null rulings, and in particular, so-called B- scrolls. For ruled surfaces in Lorentz- Minkowski space, we establish relations between their structure functions and curvatures. Structure functions can be used for e.g. proving the classical Dini-Beltrami theorem which states (in Euclidean space) that a ruled skew Weingarten surface is a piece of a helicoidal surface. In Lorentz-Minkowski space, the problem is more complex, due to the different types of surfaces with respect to their inherited metrics. It turns out that all null-ruled surfaces are Weingarten, however their structure functions need not be constant. In this paper we analyse helicoidal surfaces among Weingarten null-ruled surfaces in terms of their structure functions.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb,
Sveučilište u Osijeku, Odjel za matematiku

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.springer.com

Citiraj ovu publikaciju:

Primorac Gajčić, Ljiljana; Milin Šipuš, Željka; Protrka, Ivana
Structure Functions of Ruled Surfaces with Null Rulings // Proceedings of the 18th International Conference on Geometry and Graphics (ICGG 2018) / Cocchiarella, Luigi (ur.).
Milano: Springer, 2019. str. 371-380 doi:10.1007/978-3-319-95588-9 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Primorac Gajčić, L., Milin Šipuš, Ž. & Protrka, I. (2019) Structure Functions of Ruled Surfaces with Null Rulings. U: Cocchiarella, L. (ur.)Proceedings of the 18th International Conference on Geometry and Graphics (ICGG 2018) doi:10.1007/978-3-319-95588-9.
@article{article, author = {Primorac Gaj\v{c}i\'{c}, Ljiljana and Milin \v{S}ipu\v{s}, \v{Z}eljka and Protrka, Ivana}, editor = {Cocchiarella, L.}, year = {2019}, pages = {371-380}, DOI = {10.1007/978-3-319-95588-9}, keywords = {Minkowski space, isometry, ruled surface, B-scroll}, doi = {10.1007/978-3-319-95588-9}, isbn = {978-3-319-95587-2}, title = {Structure Functions of Ruled Surfaces with Null Rulings}, keyword = {Minkowski space, isometry, ruled surface, B-scroll}, publisher = {Springer}, publisherplace = {Milano, Italija} }
@article{article, author = {Primorac Gaj\v{c}i\'{c}, Ljiljana and Milin \v{S}ipu\v{s}, \v{Z}eljka and Protrka, Ivana}, editor = {Cocchiarella, L.}, year = {2019}, pages = {371-380}, DOI = {10.1007/978-3-319-95588-9}, keywords = {Minkowski space, isometry, ruled surface, B-scroll}, doi = {10.1007/978-3-319-95588-9}, isbn = {978-3-319-95587-2}, title = {Structure Functions of Ruled Surfaces with Null Rulings}, keyword = {Minkowski space, isometry, ruled surface, B-scroll}, publisher = {Springer}, publisherplace = {Milano, Italija} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font