Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 954223

Generalizations of Sherman’s inequality by Montgomery identity and Green function


Khan, M. A.; Khan, J.; Pečarić, Josip
Generalizations of Sherman’s inequality by Montgomery identity and Green function // Electronic journal of mathematical analysis and applications, 5 (2017), 1; 1-16 (međunarodna recenzija, članak, ostalo)


CROSBI ID: 954223 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalizations of Sherman’s inequality by Montgomery identity and Green function

Autori
Khan, M. A. ; Khan, J. ; Pečarić, Josip

Izvornik
Electronic journal of mathematical analysis and applications (2090-729X) 5 (2017), 1; 1-16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo

Ključne riječi
majorization ; n-convexity ; Montgomery identity ; Sherman’s theorem ; Montgomery identity ; Cebysev functional ; Gruss type inequality ; Ostrowsky-type inequality ; exponentially convex functions ; log-convex functions ; means

Sažetak
In this paper, we give generalization of Sherman inequality by using Green function and Montgomery identity. We present Gr¨uss and Ostrowskitype inequalities related to generalized Sherman inequality. We give mean value theorems and n-exponential convexity for the functional associated to generalized inequality. We also give a family of functions which support our results for exponentially convex functions and construct a class of means.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Tekstilno-tehnološki fakultet, Zagreb

Profili:

Avatar Url Josip Pečarić (autor)


Citiraj ovu publikaciju:

Khan, M. A.; Khan, J.; Pečarić, Josip
Generalizations of Sherman’s inequality by Montgomery identity and Green function // Electronic journal of mathematical analysis and applications, 5 (2017), 1; 1-16 (međunarodna recenzija, članak, ostalo)
Khan, M., Khan, J. & Pečarić, J. (2017) Generalizations of Sherman’s inequality by Montgomery identity and Green function. Electronic journal of mathematical analysis and applications, 5 (1), 1-16.
@article{article, author = {Khan, M. A. and Khan, J. and Pe\v{c}ari\'{c}, Josip}, year = {2017}, pages = {1-16}, keywords = {majorization, n-convexity, Montgomery identity, Sherman’s theorem, Montgomery identity, Cebysev functional, Gruss type inequality, Ostrowsky-type inequality, exponentially convex functions, log-convex functions, means}, journal = {Electronic journal of mathematical analysis and applications}, volume = {5}, number = {1}, issn = {2090-729X}, title = {Generalizations of Sherman’s inequality by Montgomery identity and Green function}, keyword = {majorization, n-convexity, Montgomery identity, Sherman’s theorem, Montgomery identity, Cebysev functional, Gruss type inequality, Ostrowsky-type inequality, exponentially convex functions, log-convex functions, means} }
@article{article, author = {Khan, M. A. and Khan, J. and Pe\v{c}ari\'{c}, Josip}, year = {2017}, pages = {1-16}, keywords = {majorization, n-convexity, Montgomery identity, Sherman’s theorem, Montgomery identity, Cebysev functional, Gruss type inequality, Ostrowsky-type inequality, exponentially convex functions, log-convex functions, means}, journal = {Electronic journal of mathematical analysis and applications}, volume = {5}, number = {1}, issn = {2090-729X}, title = {Generalizations of Sherman’s inequality by Montgomery identity and Green function}, keyword = {majorization, n-convexity, Montgomery identity, Sherman’s theorem, Montgomery identity, Cebysev functional, Gruss type inequality, Ostrowsky-type inequality, exponentially convex functions, log-convex functions, means} }




Contrast
Increase Font
Decrease Font
Dyslexic Font