Pregled bibliografske jedinice broj: 954200
Majorization Inequalities via Peano's representation of Hermite’s polynomial
Majorization Inequalities via Peano's representation of Hermite’s polynomial // International Journal of Analysis and Applications, 16 (2018), 3; 374-399 doi:10.28924/2291-8639-16-2018-374 (međunarodna recenzija, članak, ostalo)
CROSBI ID: 954200 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Majorization Inequalities via Peano's representation of Hermite’s polynomial
Autori
Latif, naveed ; Siddique, Nouman ; Pečarić, Josip
Izvornik
International Journal of Analysis and Applications (2291-8639) 16
(2018), 3;
374-399
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
classical majorization theorem ; Fuchs’s thorem ; Peano’s representation of Hermite’s polynomial ; Green function for ’two point right focal’ problem ; Cˇebyˇsev functional ; Gr¨uss type upper bounds ; Ostrowski-type bounds ; n-exponentially convex function ; mean value theorems ; Stolarsky type means
Sažetak
The Peano’s representation of Hermite polynomial and new Green functions are used to construct the identities related to the generalization of majorization type inequalities in discrete as well as continuous case. Cˇebyˇsev functional is used to find the bounds for new generalized identities and to develop the Gr¨uss and Ostrowski type inequalities. Further more, we present exponential convexity together with Cauchy means for linear functionals associated with the obtained inequalities and give some applications.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)