Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 954195

Generalization of Majorization Theorem-II


Latif, Naveed; Siddique, Nouman; Pečarić, Josip
Generalization of Majorization Theorem-II // Journal of Mathematical Inequalities, 12 (2018), 3; 731-752 doi:10.7153/jmi-2018-12-56 (međunarodna recenzija, članak, ostalo)


CROSBI ID: 954195 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalization of Majorization Theorem-II

Autori
Latif, Naveed ; Siddique, Nouman ; Pečarić, Josip

Izvornik
Journal of Mathematical Inequalities (1846-579X) 12 (2018), 3; 731-752

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo

Ključne riječi
Majorization inequailty ; Taylor’s formula ; new Green functions ; linear functionals ; (n+1)-convex functions at a point ; Gruss and Ostrowski-type upper bounds ; mean value theorems ; n-exponential convexity ; applications

Sažetak
This paper begins with a rigorous study of convex functions with the goal of developing the majorization theorems in the form of Taylor representation. In this paper, some new types of Green functions, introduced by Peˇcari´c- Agarwal-Butt-Mehmood (2017) [11] and Taylor’s formula, are used to obtain the identities related to majorization type inequalities. We present the monotonicity of the linear functionals deduced from our generalized results by using the family of (n + 1)-convex functions at a point. We give upper bounds and mean value theorems for obtained generalized identities. At the end, we explore some applications.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Tekstilno-tehnološki fakultet, Zagreb

Profili:

Avatar Url Josip Pečarić (autor)

Poveznice na cjeloviti tekst rada:

doi files.ele-math.com

Citiraj ovu publikaciju:

Latif, Naveed; Siddique, Nouman; Pečarić, Josip
Generalization of Majorization Theorem-II // Journal of Mathematical Inequalities, 12 (2018), 3; 731-752 doi:10.7153/jmi-2018-12-56 (međunarodna recenzija, članak, ostalo)
Latif, N., Siddique, N. & Pečarić, J. (2018) Generalization of Majorization Theorem-II. Journal of Mathematical Inequalities, 12 (3), 731-752 doi:10.7153/jmi-2018-12-56.
@article{article, author = {Latif, Naveed and Siddique, Nouman and Pe\v{c}ari\'{c}, Josip}, year = {2018}, pages = {731-752}, DOI = {10.7153/jmi-2018-12-56}, keywords = {Majorization inequailty, Taylor’s formula, new Green functions, linear functionals, (n+1)-convex functions at a point, Gruss and Ostrowski-type upper bounds, mean value theorems, n-exponential convexity, applications}, journal = {Journal of Mathematical Inequalities}, doi = {10.7153/jmi-2018-12-56}, volume = {12}, number = {3}, issn = {1846-579X}, title = {Generalization of Majorization Theorem-II}, keyword = {Majorization inequailty, Taylor’s formula, new Green functions, linear functionals, (n+1)-convex functions at a point, Gruss and Ostrowski-type upper bounds, mean value theorems, n-exponential convexity, applications} }
@article{article, author = {Latif, Naveed and Siddique, Nouman and Pe\v{c}ari\'{c}, Josip}, year = {2018}, pages = {731-752}, DOI = {10.7153/jmi-2018-12-56}, keywords = {Majorization inequailty, Taylor’s formula, new Green functions, linear functionals, (n+1)-convex functions at a point, Gruss and Ostrowski-type upper bounds, mean value theorems, n-exponential convexity, applications}, journal = {Journal of Mathematical Inequalities}, doi = {10.7153/jmi-2018-12-56}, volume = {12}, number = {3}, issn = {1846-579X}, title = {Generalization of Majorization Theorem-II}, keyword = {Majorization inequailty, Taylor’s formula, new Green functions, linear functionals, (n+1)-convex functions at a point, Gruss and Ostrowski-type upper bounds, mean value theorems, n-exponential convexity, applications} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font