Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 954185

Generalization of Cyclic Refinements of Jensen Inequality by Fink's Identity


Butt, Saad Ihsan; Horvath, Laszlo; Mehmood, Nasir; Pečarić, Josip
Generalization of Cyclic Refinements of Jensen Inequality by Fink's Identity // Journal of inequalities and applications, 2017 (2017), 51; 1-21 doi:10.1186/s13660-018-1640-z (međunarodna recenzija, članak, ostalo)


CROSBI ID: 954185 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalization of Cyclic Refinements of Jensen Inequality by Fink's Identity

Autori
Butt, Saad Ihsan ; Horvath, Laszlo ; Mehmood, Nasir ; Pečarić, Josip

Izvornik
Journal of inequalities and applications (1029-242X) 2017 (2017), 51; 1-21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo

Ključne riječi
Convex function ; n-Convex function at a point ; Fink’s identity ; Green function ; Cebyšev functional ; Grüss and Ostrowski inequality

Sažetak
We generalize cyclic refinements of Jensen’s inequality from a convex function to a higher-order convex function by means of Lagrange–Green’s function and Fink’s identity. We formulate the monotonicity of the linear functionals obtained from these identities utilizing the theory of inequalities for n-convex functions at a point. New Grüss- and Ostrowski-type bounds are found for identities associated with the obtained inequalities. Finally, we investigate the properties of linear functionals regarding exponential convexity and mean value theorems.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Tekstilno-tehnološki fakultet, Zagreb

Profili:

Avatar Url Laszlo Horvath (autor)

Avatar Url Josip Pečarić (autor)

Citiraj ovu publikaciju:

Butt, Saad Ihsan; Horvath, Laszlo; Mehmood, Nasir; Pečarić, Josip
Generalization of Cyclic Refinements of Jensen Inequality by Fink's Identity // Journal of inequalities and applications, 2017 (2017), 51; 1-21 doi:10.1186/s13660-018-1640-z (međunarodna recenzija, članak, ostalo)
Butt, S., Horvath, L., Mehmood, N. & Pečarić, J. (2017) Generalization of Cyclic Refinements of Jensen Inequality by Fink's Identity. Journal of inequalities and applications, 2017 (51), 1-21 doi:10.1186/s13660-018-1640-z.
@article{article, author = {Butt, Saad Ihsan and Horvath, Laszlo and Mehmood, Nasir and Pe\v{c}ari\'{c}, Josip}, year = {2017}, pages = {1-21}, DOI = {10.1186/s13660-018-1640-z}, keywords = {Convex function, n-Convex function at a point, Fink’s identity, Green function, Ceby\v{s}ev functional, Gr\"{u}ss and Ostrowski inequality}, journal = {Journal of inequalities and applications}, doi = {10.1186/s13660-018-1640-z}, volume = {2017}, number = {51}, issn = {1029-242X}, title = {Generalization of Cyclic Refinements of Jensen Inequality by Fink's Identity}, keyword = {Convex function, n-Convex function at a point, Fink’s identity, Green function, Ceby\v{s}ev functional, Gr\"{u}ss and Ostrowski inequality} }
@article{article, author = {Butt, Saad Ihsan and Horvath, Laszlo and Mehmood, Nasir and Pe\v{c}ari\'{c}, Josip}, year = {2017}, pages = {1-21}, DOI = {10.1186/s13660-018-1640-z}, keywords = {Convex function, n-Convex function at a point, Fink’s identity, Green function, Ceby\v{s}ev functional, Gr\"{u}ss and Ostrowski inequality}, journal = {Journal of inequalities and applications}, doi = {10.1186/s13660-018-1640-z}, volume = {2017}, number = {51}, issn = {1029-242X}, title = {Generalization of Cyclic Refinements of Jensen Inequality by Fink's Identity}, keyword = {Convex function, n-Convex function at a point, Fink’s identity, Green function, Ceby\v{s}ev functional, Gr\"{u}ss and Ostrowski inequality} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font