Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 954132

Generalization of Sherman’s theorem by Montgomery identity and new Green functions


Khan, M. A.; Khan, J.; Pečarić, J.
Generalization of Sherman’s theorem by Montgomery identity and new Green functions // Advanced Studies In Contemporary Mathematics, 27 (2017), 4; 495-514 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 954132 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalization of Sherman’s theorem by Montgomery identity and new Green functions

Autori
Khan, M. A. ; Khan, J. ; Pečarić, J.

Izvornik
Advanced Studies In Contemporary Mathematics (‎1229-3067) 27 (2017), 4; 495-514

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
majorization ; n-convexity ; Montgomery identity ; Sherman’s theorem ; Cebysev functional ; Gruss type inequality ; Ostrowsky-type inequality ; exponentially convex functions ; log-convex functions ; means

Sažetak
In this paper, we give generalization of Sherman inequality by using Green functions and Montgomery identity. We present Gr¨uss and Ostrowski-type inequalities related to generalized Sherman inequality. We give mean value theorems and n-exponential convexity for the functional associated to generalized inequality. We also give a family of functions which support our results for exponentially convex functions and construct a class of means.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Tekstilno-tehnološki fakultet, Zagreb

Profili:

Avatar Url Josip Pečarić (autor)


Citiraj ovu publikaciju:

Khan, M. A.; Khan, J.; Pečarić, J.
Generalization of Sherman’s theorem by Montgomery identity and new Green functions // Advanced Studies In Contemporary Mathematics, 27 (2017), 4; 495-514 (međunarodna recenzija, članak, znanstveni)
Khan, M., Khan, J. & Pečarić, J. (2017) Generalization of Sherman’s theorem by Montgomery identity and new Green functions. Advanced Studies In Contemporary Mathematics, 27 (4), 495-514.
@article{article, author = {Khan, M. A. and Khan, J. and Pe\v{c}ari\'{c}, J.}, year = {2017}, pages = {495-514}, keywords = {majorization, n-convexity, Montgomery identity, Sherman’s theorem, Cebysev functional, Gruss type inequality, Ostrowsky-type inequality, exponentially convex functions, log-convex functions, means}, journal = {Advanced Studies In Contemporary Mathematics}, volume = {27}, number = {4}, issn = {‎1229-3067}, title = {Generalization of Sherman’s theorem by Montgomery identity and new Green functions}, keyword = {majorization, n-convexity, Montgomery identity, Sherman’s theorem, Cebysev functional, Gruss type inequality, Ostrowsky-type inequality, exponentially convex functions, log-convex functions, means} }
@article{article, author = {Khan, M. A. and Khan, J. and Pe\v{c}ari\'{c}, J.}, year = {2017}, pages = {495-514}, keywords = {majorization, n-convexity, Montgomery identity, Sherman’s theorem, Cebysev functional, Gruss type inequality, Ostrowsky-type inequality, exponentially convex functions, log-convex functions, means}, journal = {Advanced Studies In Contemporary Mathematics}, volume = {27}, number = {4}, issn = {‎1229-3067}, title = {Generalization of Sherman’s theorem by Montgomery identity and new Green functions}, keyword = {majorization, n-convexity, Montgomery identity, Sherman’s theorem, Cebysev functional, Gruss type inequality, Ostrowsky-type inequality, exponentially convex functions, log-convex functions, means} }

Uključenost u ostale bibliografske baze podataka::


  • MathSciNet





Contrast
Increase Font
Decrease Font
Dyslexic Font